Into the Trenches of Regression Analysis (Part 2)

Smita Skrivanek MoreSteam.com February 13, 2013

Agenda

- Welcome
- Introduction of MBB Webcast
 Series
 - Larry Goldman, MoreSteam.com
- Today's Session
 - Smita Skrivanek, MoreSteam.com
- Open Discussion and Questions

MoreSteam.com

- Founded in 2000
- Trained over 390,000 Lean Six Sigma professionals
- Served over 2,000 corporate customers (including 50+% of the F500)
- First firm to offer the complete Black Belt curriculum online and only firm to offer online DfLSS
- Courses reviewed and approved by ASQ and PMI
- Academic Partnership with Ohio State University

Today's Presenter

Smita Skrivanek

Senior Statistician, MoreSteam.com

- Develops content & software functions, reviews projects, and assists students with questions on advanced statistics
- Heads research & development for EngineRoom® software
- Masters in Applied Statistics from The Ohio State University and an MBA from Indiana University Kelley School of Business

Discussion Points

- *Multiple regression output*
- Criteria for variable selection
- Alternative approaches to model building/selection
- Recommendations
- Brief overview of Generalized Linear Models

- Dataset from Journal of Statistics Education (amstat.org)
- Kelly Blue Book for several hundred 2005 used GM cars used to predict car value based on several characteristics
- Dependent (Y): Price
- Potential predictors (Xs): Price, Mileage, Make, Model, Trim, Type, Cylinder, Liter, Doors, Cruise, Sound, Leather
- JMP9 used to analyze data

The multiple regression model

Estimated:

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + \dots + b_K^* x_K$$

Anatomy of the regression output

Coefficient Table

Predictor	Coefficient	SE(Coeff)	t [H0: βi = 0]	P-value
Intercept	b0	se(b0)	t _{b0}	
X1	b1	se(b1)	t _{b1}	
X2	b2	se(b2)	t _{b2}	

 $s = \sqrt{MS(Error)}$ R-Sq R-Sq(adj) PRESS

ANOVA Table

Source	DF	SumSq	MeanSumSq	F	P-value
Regression	k-1	RegSS	MS(Reg)	F_{Reg}	Model p
Error	n-k	ErrorSS	MS(Error)		
Total	n-1	TotalSS	MS(Total)		

Which predictors are important?

- 1. Tests on partial regression slopes
- 2. Standardized partial regression slopes
- 3. Incremental variance explained (ΔR -squared)

Example											
⊿ Parameter Estimates											
Term	Estimate	Std Error	t Ratio	Prob> t							
Intercept	1372.4266	1434.5	0.96	0.3390							
Cylinder	2976.3618	719.8049	4.13	<.0001*							
Liter	1412.1981	903.3883	1.56	0.1184							

Example

Unstandardized:

Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t						
Intercept	3145.7503	1325.934	2.37	0.0179*						
Mileage	-0.152433	0.034638	-4.40	<.0001*						
Cylinder	4027.6746	204.6118	19.68	<.0001*						

Price = 3146 – 0.152*Mileage + 4028*Cylinder

\$3146 = Price with zero mileage and zero cylinders (intercept)

\$0.152 = Price <u>reduces</u> by \$0.152 for each 1 mile increase in mileage while holding number of cylinders fixed

\$4028 = Price <u>increases</u> by \$4028 for 1 extra cylinder while holding mileage fixed

Example

Standardized:

⊿Parame	⊿ Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t	Std Beta						
Intercept	3145.7503	1325.934	2.37	0.0179*	0						
Mileage	-0.152433	0.034638	-4.40	<.0001*	-0.12639						
Cylinder	4027.6746	204.6118	19.68	<.0001*	0.565362						

$$Z_{\text{Price}} = -0.126 * Z_{\text{Mileage}} + 0.565 * Z_{\text{Cylinder}}$$

0.126 = Price reduces by 0.126 SD for each 1 SD increase in mileage holding number of cylinders fixed

0.565 = Price increases by 0.565 SD for 1 extra cylinder while holding mileage fixed

R-squared - variance explained

SS(X1,X2) = SS(X1) + SS(X2)

$$R^{2} = \frac{SS(X1, X2)}{TotalSS} = 1 - \frac{ErrorSS}{TotalSS}$$

What's wrong with incremental variance explained?

$$\Delta R^{2} = \frac{SS(X1, X2, \dots X6) - SS(X1, X2, \dots X5)}{TotalSS}$$

$$F_{\Delta R^2} = \frac{\Delta R^2 / 1}{(1 - R^2 \text{with})/(n-k-1)}$$

 $F_{\Delta R^2} = \underline{SS(Extra \ due \ to \ added \ term)}$ $MS(Error)_{with}$

Problem:

Evaluating higher order terms

• Include polynomial terms: interactions (X1*X2), quadratic (X1²)

y = b0 + b1 x 1 + b2 x 2 + b3 x 1 x 2

 $y = b0 + b1^*x1 + b2^*x1^2$

• Problem: Polynomial terms increase collinearity

Solution: Run the model on centered predictors

	Parame	Parameter Estimates					Parameter Estimates					
Original X:	Term Intercept Cylinder	Estimate -17.05749 4054.2025	Std Error 1126.944 206.8516	t Ratio -0.02 19.60	Prob> t 0.9879 <.0001*	Term Intercept Cylinder Cylinder ⁴ 2	Estimate 63428.352 -19725.35 2083.477	Std Error 4516.492 1660.639 144.5988	t Ratio 14.04 -11.88 14.41	Prob> t <.0001* <.0001* <.0001*		
	Param	neter Estim	ates									
Centered X:	Term		Estimate	Std Erro	r t Ratio	Prob> t						
	Intercept	t	20081.396	411.9117	48.75	<.0001*						
	Cylinder	-mean	5276.3696	203.0207	25.99	<.0001*						
	(Cylinde	r-mean)^2	2083.477	144.5988	3 14.41	<.0001*						

The model selection problem

• k potential predictors = 2^k potential subsets

X1, X2
$$Y = b0 (mean)$$

 $Y = b0 + b1X1$
 $Y = b0 + b2X2$
 $Y = b0 + b1X1 + b2X2$

- 7 predictors => 128 possible models
- One 'Best' model?
- Goal: Explanation vs. Prediction/Exploration

Indices for selecting models

- Model F, p-value

 —> Large F, small p-value better
- Adjusted R-square
 Larger values better
- MS(Error) or PRESS
 —> Smaller values better
- Mallow's Cp
 —> Cp =
- Information loss criteria AIC, BIC
 Smaller values better

Model selection approaches

- Simultaneous
- Sequential/Hierarchical
- Stepwise (automatic) procedures:
 - Forward selection
 - Backward elimination
 - Forward and Backward
 - Best subsets (All possible models)

Simultaneous regression

- All predictors enter model simultaneously
- Assess the amount of unique variance in the dependent variable explained by each independent variable.
- Strengths: Order of variables is unimportant. Useful for explanation, based on theory. Allows conclusions about relative effects. Estimates direct effects.
- Limitations: Regression slopes can change depending on the actual set of variables entered. Implies a theoretical model. Estimates only direct effects.

Example: Response = Price/1000

• Ordering of predictors unimportant:

Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t	Std Beta					
Intercept	7.3231643	1.770837	4.14	<.0001*	0					
Mileage	-0.000171	3.186e-5	-5.35	<.0001*	-0.14139					
Cylinder	3.2001246	0.202983	15.77	<.0001*	0.4492					
Doors	-1.463399	0.308274	-4.75	<.0001*	-0.12586					
Cruise	6.2055113	0.651463	9.53	<.0001*	0.271098					
Sound	-2.024401	0.570718	-3.55	0.0004*	-0.09566					
Leather	3.3271433	0.597114	5.57	<.0001*	0.150575					

Parame	Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t	Std Beta						
Intercept	7.3231643	1.770837	4.14	<.0001*	0						
Mileage	-0.000171	3.186e-5	-5.35	<.0001*	-0.14139						
Leather	3.3271433	0.597114	5.57	<.0001*	0.150575						
Doors	-1.463399	0.308274	-4.75	<.0001*	-0.12586						
Cylinder	3.2001246	0.202983	15.77	<.0001*	0.4492						
Cruise	6.2055113	0.651463	9.53	<.0001*	0.271098						
Sound	-2.024401	0.570718	-3.55	0.0004*	-0.09566						

• Which predictors included is important:

Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t						
Intercept	3.6597701	1.661255	2.20	0.0279*						
Cylinder	3.2471672	0.206276	15.74	<.0001*						
Doors	-1.436854	0.313528	-4.58	<.0001*						
Cruise	6.0796646	0.66222	9.18	<.0001*						
Sound	-1.935754	0.580275	-3.34	0.0009*						
Leather	3.2922223	0.607333	5.42	<.0001*						

Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t	Std Beta					
Intercept	13.898198	1.090933	12.74	<.0001*	0					
Mileage	-0.000179	0.000016	-11.23	<.0001*	-0.14847					
Make[Buick]	-3.667984	0.39584	-9.27	<.0001*	-0.15466					
Make[Cadillac]	9.7795162	0.472062	20.72	<.0001*	0.412364					
Make[Chevrolet]	-5.99373	0.250012	-23.97	<.0001*	-0.36809					
Make[Pontiac]	-5.728626	0.291449	-19.66	<.0001*	-0.28917					
Make[SAAB]	11.351309	0.39834	28.50	<.0001*	0.528955					
Cylinder	3.7406511	0.139464	26.82	<.0001*	0.525073					
Doors	-2.092318	0.160575	-13.03	<.0001*	-0.17995					
Cruise	-0.095122	0.366817	-0.26	0.7955	-0.00416					
Sound	0.0733854	0.295011	0.25	0.8036	0.003468					
Leather	0.4903796	0.31561	1.55	0.1206	0.022193					

Sequential/Hierarchical regression

- Predictors are entered in steps, individually or in blocks, with each predictor or block being assessed in terms of what it adds to the prediction of Y after controlling for the previous entered predictors in the model.
- Strengths: useful for explanation, based on theory. Allows testing for curves/interactions. Estimates total effects.
- Limitations: incremental Rsq changes/can overestimate importance of variables depending on order of entry of variables. Order of entry implies a theoretical model. estimates only total effects.

- An automated program is used to select the variables and the order in which they are entered in the model based on pre-selected statistical criteria.
- Tells you how much unique variance in the dependent variable each of the independent variables explained.
- Strengths: can pick an efficient subset of variables for prediction based on purely statistical criteria. Doesn't need theoretical basis.
- Limitations: cannot use for explanation. Can produce nonsensical models.

Forward Stepwise – p-value

S	tepwis	e Fit for F	Price	Stepwise Fit for Price										
⊿St	Stepwise Regression Control													
St	Stopping Rule: P-value Threshold Prob to Enter 0.05 Prob to Leave 0.1 Enter All Make Model Remove All Run Model													
Di	rection:	Forwa	rd 🔻											
	Go Stop Step													
	SSE	DFE	RMSE	RSqua	are	RSquare Adj	(Срр		AICc	BIC			
4.34	49e+10	797 7	387.1142	0.44	57	0.4415		77	166	14.05 16	651.39			
⊿Cı	urrent	Estimates	5											
Loc	kEntere	ed Paramete	er Esti	mate	nDF	SS	"F Ratio"	"Prob>F"						
1	1	Intercept	7323.1	6431	1	0	0.000	1						
	1	Mileage	-0.170	5171	1	1.563e+9	28.646	1.14e-7						
	1	Cylinder	3200	1246	1	1.36e+10	248.550	6.1e-49						
	1	Doors	-1463	3991	1	1.23e+9	22.535	2.45e-6						
	1	Cruise	6205.5	1127	1	4.951e+9	90.735	1.9e-20						
	1	Sound	-2024	4007	1	6.866e+8	12.582	0.00041						
	1	Leather	3327.1	4331	1	1.694e+9	31.048	3.45e-8						
⊿St	ep His	story												
St	tep	Parameter	Action	"Sig P	rob"	Seq SS	RSquare	Ср	р	AICc	BIC			
	1	Cylinder	Entered	0.0	0000	2.54e+10	0.3239	172.17	2	16763.6	16777.7 🔘			
	2	Cruise	Entered	0.0	0000	4.715e+9	0.3839	87.774	3	16690.8	16709.5 🔘			
	3	Leather	Entered	0.0	0000	1.558e+9	0.4038	61.228	4	16666.5	16689.9 🔘			
	4	Mileage	Entered	0.0	0000	1.468e+9	0.4225	36.334	5	16642.9	16671 🔘			
	5	Doors	Entered	0.0	0000	1.132e+9	0.4369	17.582	6	16624.6	16657.3 🔘			
	6	Sound	Entered	0.0	0004	6.866e+8	0.4457	7	7	16614.1	16651.4 🔍			

💌 Stepwis	e Fit for	Price/1000)									
⊿ Stepwise	e Regres	sion Cont	rol									
0.05	0.00	DUICE		D.C			_			DIC		
0222 0442	DFE 706	2 4041010	A Square	KSquare Adj	6 107008	-p p	407	AICC	4242	BIC		
9332.0443	Fetimate	5.4241510	0.0011	0.0000	0.12700:	0 0	421	1.045	4313	0.023		
	Estimate	:5										
LockEntere	d Paramet	er				Estim	ate	nDF		SS	"F Ratio"	"Prob>F"
	Intercept Make/Se	turn ⁹ Chaura	late Dantia	Pulak CAAD	Codillool	19.5099	011	1	4074	0 56	0.000	20.005
	Make(Sa Make(Sa	turn&Chevro	let Pontiac	R Duick	scaunac}	-0.4000	462	4	9271	0.00	11 222	30-290 1.4o-5
	Make(Sa	turn-Chevrol	atl	abuicky		-0.0700	402	1	0.763	2026	0.065	0.7097
	Make(Po	ntiac-Buick)	ey			-0.8144	438	1	134 (1294	11 431	0.00076
	Make{SA	AB-Cadillac)				-1 1479	221	1	177.7	7231	15 158	0.00011
	Mileage/	1000					0	1	0.942	2241	0.080	0.777
	Cvlinder-	mean					0	1	14.60	0558	1.246	0.26464
	M*C/100	0				-0.0343	035	1	1935	.821	165.107	1.8e-34
	Liter					5.18509	832	1	1470	1.59	1253.901	1e-165
	Doors					-1.6350	969	1	1396	.247	119.086	6.2e-26
	Cruise						0	1	23.20	0105	1.981	0.15965
	Sound						0	1	0.39	5574	0.034	0.8544
	Leather						0	1	0.278	3081	0.024	0.87772
⊿ Step His	tory											
Step	Paramete	r	Action	"Sig Prob"	Seq SS	RSquare		Ср	р	A	AICc E	BIC
1	Make{SAA	B-Cadillac}	Entered	0.0000	48505.66	0.6182	17	750.9	3	5198	3.48 5217.	18 🔘
2	Liter		Entered	0.0000	17182.09	0.8372	2	290.9	4	4515	5.22 4538.	59 🔘
3	M*C/1000		Entered	0.0000	1996.214	0.8626	12	23.05	5	4380	0.63 4408.	66 🔘
4	Doors		Entered	0.0000	1178.836	0.8777	24	4.739	6	4289	9.53 4322.	22 🔘
5	Make{Pont	tiac-Buick}	Entered	0.0000	265.7372	0.8811	6.	1271	8	4271	1.04 4313.	02 🔘
6	Cruise		Entered	0.1596	23.20105	0.8813	6.	1529	9	4271	1.09 4317.	71 🔘
7	Cylinder-m	nean	Entered	0.2495	15.54356	0.8815	6.	8303	10	4271	1.81 4323.	06 🔘
8	Mileage/10	000	Entered	0.3994	8.324862	0.8817	6	3.122	11	4273	3.15 4329.	03 🔘
9	Make{Satu	irn-Chevrolet	} Entered	0.7875	0.852207	0.8817	10	0.049	12	4275	5.14 4335.	64 🔘
10	Sound		Entered	0.8555	0.389774	0.8817	12	2.016	13	4277	7.18 4342	2.3 🔘
11	Leather		Entered	0.8985	0.191424	0.8817		14	14	4279	9.24 4348.	97 🔘
12	Best		Specific			0.8811	6.	1271	8	4271	1.04 4313.	02 🔍

SSE	DFE	RMSE	RSquare	RSquare Ad	j C	р р		AICc		BIC		
9829.2011	795 3.516216		0.8747	0.8735	7.07485	55 9 4314.		4.756	4361.374			
⊿ Current Estimates												
LockEntered Parameter					Estimate nDF				SS	"F Ratio"	"Prob>F"	
1	Intercept					32.3036167		1		0 0.000) 1
	Mileage/1000					0		1	10.42745		0.843	0.35876
	Cylinder					-3.2727681		1	142.1567		11.498	0.00073
	Cylinder [^]	2				0.68212035		1	796.3568		64.410	3.6e-15
	M*C/1000)				-0.034969		1	1980.383 1		160.176	1.4e-33
	Doors					-1.7934	1	1635.379 1		132.272	2e-28	
	Cruise				0 1			8.244382		0.667	0.41451	
	Sound					0 1		16.45799		1.332	0.24885	
	Leather					0 1		3.680278		0.297	0.58567	
	Make{Saturn&Chevrolet&Pontiac&Buick-SAAB&Cadillac}					-7.2668766 4		30227.35 6		611.208	9e-241	
	Make{Saturn&Chevrolet-Pontiac&Buick}				-0.8742774 2		550.5265		22.264	3.9e-10		
	Make{Saturn-Chevrolet}					0 1		2.191488		0.177	0.67402	
	Make{Pontiac-Buick}					-1.4444095 1		399.1422		32.283	1.87e-8	
V	Make{SAAB-Cadillac}					1.26373337 1		166.9088		13.500	0.00025	
⊿ Step His	Step History											
Step	Parameter		Action	"Sig Prob"	Seq SS	RSquare		Ср	р	Α	ICc	BIC
1	Make{SAAE	3-Cadillac}	Entered	0.0000	48505.66	0.6182		1619	3	5198	.48 5217	7.18 🔘
2	Cylinder^2		Entered	0.0000	15919.17	0.8211	33	6.55	4	4591	.02 461	4.4 🔘
3	M*C/1000		Entered	0.0000	1997.672	0.8466	17	7.36	5	4469	.62 4497	.65 🔘
4	Doors		Entered	0.0000	1634.61	0.8674	47	.474	6	4354	.33 4387	.02 🔘
5	Make{Pont	iac-Buick}	Entered	0.0000	432.9064	0.8729	16	.545	8	4324	.25 4366	6.23 🔘
6	Cylinder		Entered	0.0007	142.1567	0.8747	7.0	0749	9	4314	.76 4361	1.37 🔘
7	Sound		Entered	0.2489	16.45799	0.8749	7.	7469	10	4315	.46 4366	6.72 🔘
8	Mileage/10	00	Entered	0.3531	10.6705	0.8751	8	.886	11	4316	.65 4372	2.53 🔘
9	Cruise		Entered	0.3956	8.933906	0.8752	10	.165	12	4317	.98 4378	3.49 🔘
10	Leather		Entered	0.6967	1.882116	0.8752 12.013		.013	13	431	9.9 4385	5.02 🔘
11	Make{Satu	rn-Chevrolet	Entered {	0.9083	0.164584	0.8752	2	14	14	4321	.96 439	91.7 🔘
12	Best		Specific			0.8747	7.0	0749	9	4314	.76 4361	.37 🔍

Recommendations

- Use prior knowledge and plot your data!
- Use manual methods for explanatory modeling.
- Use automated procedures only for preliminary exploratory/prediction
 modeling
- Obtain several plausible models and compare them or combine them.
- Don't forget multiple testing issues when 'fishing'
- Among automated procedures Best Subsets selection with AIC or BIC criteria are the best.

$g(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_K X_K + \varepsilon$

- Random component
- Systematic component
- Link functions: Identity, Logit, Log
- Maximum Likelihood Estimation

References

- Data Analysis And Regression a second course in statistics
 Frederick Mosteller, John W. Tukey
- Introduction to Multiple Regression: How Much Is Your Car Worth? Shonda Kuiper <u>http://www.amstat.org/publications/jse/v16n3/datasets.kuiper.html</u>
- Interpreting Multiple Linear Regression A Guidebook of Variable Importance
 - Laura Nathans, Frederick Oswald, Kim Nimon (Practical Assessment, Research & Evaluation, Volume 17, Number 9, April 2012)
- Multiple Linear Regression in Data Mining MIT OpenCourseWare <u>http://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-</u> <u>2003/lecture-notes/lecture9.pdf</u>

Thank You for Joining Us

Master Black Belt Program

- Offered in partnership with Fisher College of Business at The Ohio State University
- Employs a Blended Learning model with world-class instruction delivered in both the classroom and online
- Covers the MBB Body of Knowledge, topics ranging from advanced *DOE* to *Leading Change* to *Finance for MBBs*

Questions? Comments? We'd love to hear from you.

Smita Skrivanek, Senior Statistician – MoreSteam.com sskrivanek@moresteam.com

Larry Goldman, Vice President Marketing – MoreSteam.com lgoldman@moresteam.com

Join us for our next Webcast on March 21st:

Eric Olsen, California Polytechnic State University, will discuss how to build 10,000 hours of experience with A3s.

Archived presentations and other materials: http://www.moresteam.com/presentations/

