

2021 EngineRoom Validation Kit

Welcome!

MoreSteam is dedicated to providing high-quality software and excellent customer service to users of our products, including users of EngineRoom® software.

We recognize that your company may operate in a regulated environment and, as such, may need to validate and document your intended use of our software. To that end, we have prepared this software validation kit. Among other things, this kit provides documentation that our software has been rigorously tested against independent, reliable, and documented sources that are unaffiliated with MoreSteam to ensure accuracy and reliability of EngineRoom's statistical analyses and output. The instructions and datasets in this documentation can be used as baseline data and results to compare with EngineRoom during the validation process.

In addition, this EngineRoom Validation Kit provides various related reference material. These information resources include documentation of our application development lifecycle practices and the practices we use when validating EngineRoom prior to release. As reflected by the Table of Contents, these materials comprise the following:

- EngineRoom Software Development Life Cycle
- EngineRoom Software Testing Protocol
- EngineRoom Technical Specifications
- EngineRoom Security Document
- EngineRoom Output validated against National Institute of Standards and Technology (NIST) Datasets

At MoreSteam, we are committed to continuous improvement and strive to keep raising the bar in the field of quality improvement. If you have any questions regarding our validation policies and processes, please contact our EngineRoom Support Team by sending an email to <u>erteam@moresteam.com</u> or by visiting the EngineRoom website at https://www.moresteam.com/engineroom/support.cfm.

Sincerely,

Peg Pennington, President MoreSteam.com LLC 9961 Brewster Lane Powell, OH 43065

Table of Contents

Instr	uctions	1
Engi	neRoom Software Verification and Validation	3
Engi	neRoom Technical Specifications	4
Data	set Requirements	4
Engi	neRoom Security Document	5
Com and	parison against NIST Statistical Standards using NIST Data Sets Validated Output	6
I. II. III	Univariate Summary Statistics ANOVA	6 11 14
Engi	neRoom Validation Test Output	
I. II. IV. V. VI. VII. VIII. IX.	Dataset: BasicGraphs Dataset: Measurement System Analysis Dataset: Statistical Process Control Dataset: ParametricHypTests Dataset: NonParametricHyp Tests Dataset: Regression Dataset: DOE_Full Dataset: DOE_Full Dataset: DOE_Fractional Dataset: DOE_General	17 23 32 39 49 58 65 69 73
Soft	ware Development Life Cycle	Appendix A

© MoreSteam.com LLC 2021

Instructions

Overview:

These instructions will guide the user through the software validation procedure, i.e., a standard procedure of generating analytic outputs using the EngineRoom software application, and matching the generated outputs with validated outputs. Notably, for those unfamiliar with EngineRoom, EngineRoom will generate the outputs using sets of data pre-populated in the application, which will reduce the time needed to generate the required outputs and the time otherwise required for the assessor to learn how to navigate EngineRoom's user interface.

As detailed below, it is necessary to have an active MoreSteam account provisioned with an active subscription to EngineRoom application. If you do not have such access, we provide instructions and assistance in providing an account and license. Also, we provide a link that will add an EngineRoom Validation project to the assessor's account, thus providing access to prepopulated datasets and analyses. These in-application outputs can be refreshed and/or revisited for just-in-time validation assessments. We also provide files of numerically and visually accurate outputs/results for the tests provided by in the prepopulated project file. These reference outputs are intended for comparison with the results generated using the EngineRoom application. The validated results can be found within this Validation Kit by referring to the Table of Contents and locating the section titled "EngineRoom Validation Test Output".

Procedure:

- First, assure you have access to EngineRoom software via an active account and subscription by logging into EngineRoom software at <u>engineroom.moresteam.com</u>. If you do not have an active account or EngineRoom subscription, you can either obtain a trial subscription <u>here</u> or by contacting MoreSteam at <u>support@moresteam.com</u>.
- 2. Next, access the <u>EngineRoom Validation</u> project housed within your EngineRoom subscription. Clicking the EngineRoom Validation project link will open the EngineRoom application and the EngineRoom Validation project will appear on EngineRoom's Welcome screen. Select the "Launch Project" button and access the project. In the event the EngineRoom Validation project does not appear in your account, or you have any difficulty accessing either the EngineRoom application or the EngineRoom Validation project, please contact MoreSteam.
- 3. The EngineRoom Validation project includes multiple data sources (data sets) appearing on the left side of the workspace, and multiple completed studies (including graphical and numerical outputs) on the right side of the workspace. When selected, the completed studies are automatically refreshed and generate outputs based on the data sources relating to the studies.

Notes:

Acceptable differences between the generated results and the validated references may be found because of:

- differences in browsers or browser settings (e.g.: colors on graphs)

- minor differences in the formatting of output in EngineRoom (e.g., line thickness, font appearance, etc.)

Other than acceptable differences, the multiple Validated EngineRoom outputs should match the outputs generated by the EngineRoom Validation project studies.

Compliance with CFR Title 21 – Part 11

- For purposes of U.S. Food and Drug Administration (FDA) validation, EngineRoom should be considered a tool. EngineRoom customers who are FDA-regulated might be expected to validate systems built using the EngineRoom application. Because EngineRoom is a tool, the user must demonstrate to the FDA that EngineRoom is being used correctly. See "Complying with United States Code of Federal Regulations, Title 21 Part 11" in Appendix 1: "FDA-related issues" in "The Quality Imperative" for more information.
- Customers can re-create analyses by saving and running/refreshing the provided EngineRoom Validation Project, which contains the aforementioned multiple data sources and studies with output. The study outputs represent the correct outputs for various data configurations and study settings and are included in a PDF file which can be used to check the results from the analyses.

EngineRoom Statistical Software provides password protection for viewing, opening, saving, and modifying project files. This protection serves as validation for the ongoing use and storage of project files and data. For complete control, password protection should be combined with a file or source control system to verify dates, times, and approved access.

EngineRoom Software Verification and Validation

Versions of third-party software used: R 3.5.0 and .NET Framework 4.6.2 with C# 7.0

Automated R Tests (Regression Tests)

- These test each of our R Scripts and make sure that the results are what we expect.
 - Utilize pre-existing JSON files in the repository containing the exact results of a given combination of inputs and options into a study.
 - For each noted combination of inputs and options, we run the script and check that its results match that of the JSON file.
- Tests are run before and after any changes to the R scripts are submitted to Code Review.
- Changes to formula calculations in a script trigger corresponding changes to the testing JSON files associated with the script, to account for the new calculations.
- Test data inputs are sourced from MoreSteam's courses (where data sets are validated using multiple commercial software packages and hand calculations) as well as textbooks and online data libraries (such as NIST, Kaggle and Github).
- If cases with specific inputs/options need to be accounted for that are not covered in the test battery, we add them to the tests.

Automated C# Tests (Unit Tests)

- For the tools coded in C#, unit tests are used to verify:
 - Studies run correctly
 - Studies contain expected results objects
 - Key calculations yield accurate values

Automated Test Info (Both C# and R)

• The builds for development and production proceed on the local development server. If any automated test fails, the build fails and does not push its artifacts to the development/production sites.

QA Testing (Manual Tests)

- While a code edit is undergoing Code Review, the reviewers test multiple situations relating to the code in order to stress test the edited code.
- Any unexpected behavior is noted and fixed immediately, while pre-existing bugs or aberrations are noted for resolution in a later sprint.
- Code Review is complete once all tests pass the evaluation criteria.

Smoke Testing (Manual Regression Tests)

- Before a major release, multiple team members implement a script to test specific parts of the application for incorrect behavior.
- Multiple browsers are tested to ensure cross-browser compatibility.

- If incorrect behavior is found that does not exist on the production server, it is patched and re-tested before release.
- If incorrect behavior is found that does exist on the production server, it is prioritized for resolution on the next sprint cycle.

EngineRoom Technical Specifications

System Requirements

Browser

- Chrome (Version 79+)
- Edge (Version 91+)
- Firefox (Version 78+)
- Safari (Version 13+)

Screen Resolution

- 1024 x 768 (minimum)
- 1920 x 1080 (recommended)

Operating Systems

- Microsoft Windows (7 and higher)
- Apple Mac OS X

Dataset Requirements

Supported Formats: Microsoft Open XML format for spreadsheets (.XLSX and .CSV)

Note: If you do not have Microsoft Excel, your spreadsheet program may be capable of exporting to this format.

Maximum File Size

- Data files: 500kB (approximately 30,000 cells)
- Supporting files (images, PDF, etc.): 10 MB

Maximum Column Size

• 10,000 cells

Maximum Storage

• Data and supporting files: 500 MB

EngineRoom Security Document

With nearly 20 years of experience building and running software for thousands of the world's largest corporations, EngineRoom has adopted advanced security technologies and practices.

We make continuous efforts to assure that the infrastructure remains robust, available, and resilient to intrusion. These safeguards assure on-going user access to EngineRoom and keep your data safe.

Comparison against NIST Statistical Standards using NIST Data Sets and Validated Output

The National Institute of Standards and Technology (NIST) provides a suite of Statistical Reference Data Sets (StRD) to assist in the evaluation of the numerical accuracy of statistical software. More information about these data sets is available at www.itl.nist.gov/div898/strd/.

The StRD data sets are the subject of this paper. The following sections report the results of tests that were run in EngineRoom. All tests used the same date: March 22, 2021. The tests were run for 64-bit systems on the latest versions of the following browsers (Note, IE is no longer supported in EngineRoom):

- Windows versions: Edge, Chrome
- macOS versions: Safari, Chrome

Index

- I. Univariate Summary Statistics
- II. ANOVA
- III. Linear Regression

I. Univariate Summary Statistics

URL: <u>https://www.itl.nist.gov/div898/strd/univ/homepage.html</u> Selected 3 Data sets from the list: PiDigits, NumAcc2 and NumAcc4

Dataset Name	Level of Difficulty	Number of Observations	Source
<u>PiDigits</u>	Lower	5000	Observed
<u>Lottery</u>	Lower	218	Observed
Lew	Lower	200	Observed
<u>Mavro</u>	Lower	50	Observed
Michelso	Lower	100	Observed
NumAcc1	Lower	3	Generated
NumAcc2	Average	1001	Generated
NumAcc3	Average	1001	Generated
NumAcc4	Higher	1001	Generated

Univariate Summary Statistics Results Table:

Data Set	Size	Statistic	NIST Value	ER Value
PiDigits	5000	Mean	4.5348000000000	4.535
		Standard Deviation	2.86733906028871	2.867
		First-order Autocorrelati on	-0.00355099287237872	-0.004
NumAcc2	1001	Mean	1.2	1.2
		Standard Deviation	0.1	0.1
		First-order Autocorrelati on	-0.999	-1
NumAcc4	1001	Mean	1000000.2	10,000,000
		Standard Deviation	0.1	0.1
		First-order Autocorrelati on	-0.999	-0.992

Full Results:

1. PiDigits:

NIST:

```
Certified Values
Sample Mean ybar: 4.5348000000000
Sample Standard Deviation (denom. = n-1) s: 2.86733906028871
Sample Autocorrelation Coefficient (lag 1) r(1): -0.00355099287237972
```

Number of Observations:

5000

Statistics		
	Υ	
Count	5,000	
Min	0	
Max	9	
Mean	4.535	
Median	5	
Standard Deviation	2.867	
Variance	8.222	
Anderson-Darling Test Statistic	85.68	
Anderson-Darling p-value	0	
Skewness	-0.008	Correlation
Kurtosis	-1.22	R -0.004

2. NumAcc2:

Ν	1IS	<u>ST</u> :	
_			

<u></u> .			Certifi	ed Values
Sample Sample	Mean Standard Deviation (denom - n-1)	ybar:	1.2	(exact)
Sample	Autocorrelation Coefficient (lag 1)	r(1):	-0.999	(exact)
Number	of Observations:		1001	

Statistics		
	Υ	
Count	1,001	
Min	1.1	
Max	1.3	
Mean	1.2	
Median	1.2	
Standard Deviation	0.1	
Variance	0.01	
Anderson-Darling Test Statistic	179.2	
Anderson-Darling p-value	0	
Skewness	0	Correlation
Kurtosis	-2.003	R -1

3. NumAcc4:

NIST:

			Certified Va	lues
Sample Sample	Mean Standard Deviation (denom = n-1)	ybar: s:	10000000.2 0 1	(exact)
Sample	Autocorrelation Coefficient (lag 1)	r(1):	-0.999	(exact)
Number	of Observations:		1001	

Statistics		
	Υ	
Count	1,001	
Min	10,000,000	
Max	10,000,000	
Mean	10,000,000	
Median	10,000,000	
Standard Deviation	0.1	
Variance	0.01	
Anderson-Darling Test Statistic	179.2	
Anderson-Darling p-value	0	
Skewness	0	Correlation
Kurtosis	-2.003	R -0.992

II. <u>ANOVA</u>

URL: https://www.itl.nist.gov/div898/strd/anova/anova.html

Selected 3 Datasets from the list: SiRstv, SmLs04 and SmLs08 Design: One-Way Balanced Model: $y_{ij} = \mu + \tau_i + \epsilon_{ij}$

Dataset Name	Level of Difficulty	Constant Leading Digits	Replicates per Cell	Number of Treatments	Source
<u>SiRstv</u>	Lower	3	5	5	Observed
<u>SmLs01</u>	Lower	1	21	9	Generated
SmLs02	Lower	1	201	9	Generated
SmLs03	Lower	1	2001	9	Generated
<u>AtmWtAg</u>	Average	7	24	2	Observed
SmLs04	Average	7	21	9	Generated
<u>SmLs05</u>	Average	7	201	9	Generated
<u>SmLs06</u>	Average	7	2001	9	Generated
<u>SmLs07</u>	Higher	13	21	9	Generated
<u>SmLs08</u>	Higher	13	201	9	Generated
<u>SmLs09</u>	Higher	13	2001	9	Generated

One-way ANOVA Results Table:

Data Set	Replicates	Statistic	NIST Value	ER Value
SiRstv	5	Between SS	5.11462616000000 E-2	0.0511
		Within SS	2.16636560000000 E-1	0.2166
		Between MS	1.27865654000000 E-2	0.0128
		Within MS	1.083180000000 E-2	0.0108
		F Statistic	1.18046237440255	1.18
SmLs04	21	Between SS	1.6800000000000	1.68
		Within SS	1.8000000000000	1.8
		Between	2.1000000000000 E-1	0.21

		MS		
		Within MS	1.000000000000000 E-2	0.01
		F Statistic	2.1000000000000 E+1	21
SmLs08	201	Between SS	1.60800000000000 E+1	16.08
		Within SS	1.80000000000000 E+1	18.04
		Between MS	2.0100000000000	2.01
		Within MS	1.000000000000000 E-2	0.01
		F Statistic	2.0100000000000 E+2	200.6

1. SiRstv:

NIST:

Certified Values:

Source of Variation	df	Sums of Squares	Mean Squares	F Statistic
Between Instrument	4	5.11462616000000E-02	1.27865654000000E-02	1.18046237440255E+00
Within Instrument	20	2.16636560000000E-01	1.08318280000000E-02	

EngineRoom:

ANOVA Table

	DF	Sum Sq	MeanSq	FValue
Instrument	4	0.0511	0.0128	1.18
Residuals	20	0.2166	0.0108	NA

2. SmLs04:

NIST:

Certified Values:

Source of Variation	df	Sums of Squares	Mean Squares	F Statistic
Between Treatment	8	1.6800000000000E+00	2.1000000000000E-01	2.1000000000000E+01
Within Treatment	180	1.800000000000E+00	1.0000000000000E-02	

EngineRoom:

ANOVA Table						
	DF	Sum Sq	MeanSq	FValue	p-value	
Treatment	8	1.68	0.21	21	0	
Residuals	180	1.8	0.01	NA	NA	

3. SmLs08:

NIST:

Certified Values:

Source of Variation	df	Sums of Squares	Mean Squares	F Statistic
Between Treatment	8	1.6080000000000E+01	2.0100000000000E+00	2.010000000000E+02
Within Treatment	1800	1.8000000000000E+01	1.0000000000000E-02	

EngineRoom:

ANOVA Table

	DF	Sum Sq	MeanSq	FValue
Treatment	8	16.08	2.01	200.6
Residuals	1,800	18.04	0.01	NA

III. Linear Regression

URL: https://www.itl.nist.gov/div898/strd/lls/lls.shtml

Data set: Norris

Linear Regression Results Table:

Data Set	Sample size	Statistic	NIST Value	ER Value
Norris	36	Par1 Coefficient	-0.262323073774029	-0.262
		Par1 SE	0.232818234301152	0.2328
		Par2 Coefficient	1.00211681802045	1.002
		Par2 SE	0.429796848199937 E-03	0.0004
		Residual S	0.884796396144373	SQRT(MSE) = SQRT(0.7829) = 0.8848
		R-sq	0.999993745883712	1
		Regression SS	4255954.13232369	4,255,954
		Regression MS	4255954.13232369	4,255,954
		Residual SS	26.6173985294224	26.62
		Residual MS	0.782864662630069	0.7829
		F Statistic	5436385.54079785	5,436,386

Norris:

NIST:

Certified Regression Statistics

Parameter	Estimate	Standard Deviation of Estimate
BØ	-0.262323073774029	0.232818234301152
B1	1.00211681802045	0.429796848199937E-03

Residual Standard Deviation 0.884796396144373

R-Squared 0.999993745883712

Certified Analysis of Variance Table

Source of	Degrees o	f Sums of	Mean	F Statistic
Variation	Freedom	Squares	Squares	
Regression	1	4255954.13232369	4255954.13232369	5436385.54079785
Residual	34	26.6173985294224	0.782864662630069	

y = -0.2623 + (1.002) * (x)

Regression Statistics

Correlation	1
Coefficient, R	
R Squared	1
Adjusted R Squared	1
Count	36

Coefficient Table

	Estimate	Std. Error	t value	p- value	95% Cl (lower)	95% Cl (upper)
(intercept)	-0.262	0.2328	-1.1	0.2677	-0.719	0.194
х	1.002	0.0004	2,300	0	1.001	1.003

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	1	4,255,954	4,255,954	5,436,386	0
Residuals	34	26.62	0.7829	NA	NA
Total	35	4,255,981	NA	NA	NA

EngineRoom Validation Test Output

- I. Dataset: Basic Graphs
- II. Dataset: Measurement System Analysis
- III. Dataset: Statistical Process Control
- IV. Dataset: ParametricHypTests
- V. Dataset: NonParametricHypTests
- VI. Dataset: Regression
- VII. Dataset: DOE_Full
- VIII. Dataset: DOE_Fractional
- IX. Dataset: DOE_General

I. Dataset: BasicGraphs

2. Bar Chart - Frequencies

3. Box Plot - Vendors

4. Box Plot: Contract Amount x Vendors

5. Histogram: Vendors

6. Histogram: Contract Amount x Vendors

	created 2 minutes ago / modified	2 minutes	sago							زم، graph
tract ount	tatistics		0		Charts	of Contract	Amoun	t		
)2	addition of the second s	1	2	3	Charts	or contract	. / inoun	° E		Λ
	Count	29	43	20					ф, с Ш	00
	Min	56	56	50				1		
	Max	115	140	128	° C					
1	Mean	82.55	80.42	75.4	enb					
1	Median	82	76	76	E_2					
9	Standard Deviation	13.59	18.92	17.42	0	60	80	100 1	120	140
`	Variance	184.8	357.8	303.6						
,	Anderson-Darling Test Statistic	0.403	2.313	0.6286	15-			2		
	Anderson-Darling p-value	0.3352	0	0.087	10-					
9	Skewness	0.5567	1.347	1.355	nba 5				Highe	st range
	Kurtosis	0.2043	1.374	3.346	Ĕ 0					
						60	80	2	120	140
								2		
					₹ 6			5		
					uen 4					
					be 2-					
					LL 0	60	80	100	120	140

7. Pie Chart: Defects

8. Scatter Plot: Test 1 x Test 2

9. Scatter Plot: Test 1 x Test 2 x Test 3

10. Trend Chart: Frequencies_1 x Frequencies_2

11. Pareto Analysis: Defects

3						ို export ြ copy i∃0notes ြာ0files
Frequency Parete Variable Analys	Pareto	Analysis	: Defects			ද်္ပာ} study setup
Defects	created 2 m	iinutes ago / mo	odified a minute ago			
	Results					Chart of Defects
78		Frequency	Cumulative Frequency	Percentage	Cum Percentage	$ \textcircled{a} \vdash \bigoplus \bigcirc \bigcirc$
	Late delivery	26	26	33.33	33.33	Pareto
	Cold pizza	18	44	23.08	56.41	100
	Missing item	11	55	14.1	70.51	
	Tastes bad	8	63	10.26	80.77	
	Other	7	70	8.97	89.74	60 80
	Rude driver	5	75	6.41	96.15	
	Wrong price	3	78	3.85	100	60 e
						anti ati
						قــــــــــــــــــــــــــــــــــــ
						20
						20
						Cold. Missi Task Othe Rude Wron
						delivery "Pizza" "Ing item
						Defects

II. Dataset: Measurement System Analysis

1. Gauge R&R: Measurement

Gauge R&R: Measurement

created a day ago / modified 2 hours ago

ANOVA Table - Crossed, with Interaction

	Df	Sum Sq	Mean Sq	F value	p-value
Part #	4	368.3	92.08	61,086	0
Operator	2	0	0	0.0023	0.9977
Operator*Part #	8	0.0121	0.0015	0.6615	0.7205
Repeatability	30	0.0684	0.0023		
Total	44	368.4			

ANOVA Table - Crossed, without Interaction

	Df	Sum Sq	Mean Sq	F value	p-value
Part #	4	368.3	92.08	43,508	0
Operator	2	0	0	0.0016	0.9984
Repeatability	38	0.0804	0.0021		
Total	44	368.4			

Gauge R&R - Variance Components (ANOVA) Method

	VarComp	% Total Variance
Total Gauge R&R	0.0021	0.02
Repeatability	0.0021	0.02
Reproducibility	0	0
-Operator	0	0
Part-to-Part	10.23	99.98
Total Variance	10.23	100

Gauge R&R - AIAG Method

	Std Dev	StudyVar	% Study Var
Total Gauge R&R	0.046	0.276	1.44
Repeatability	0.046	0.276	1.44
Reproducibility	0	0	0
-Operator	0	0	0
Part-to-Part	3.199	19.19	99.99
Total Variance	3.199	19.19	100

Number of Distinct Categories 98

Charts of Measurement

2. Attribute Agreement Analysis: Binary

ent	
is	

Attribute Agreement Analysis: Binary

created a day ago / modified 4 hours ago

Within Appraiser Agreement

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% CI (upper)
Janet	20	20	100	86.09	100
Chris	18	20	90	68.3	98.77
Sam	19	20	95	75.13	99.87

Within Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
Janet	F	1	0.2236	4.472	0
	Р	1	0.2236	4.472	0
Chris	F	0.798	0.2236	3.569	0.0002
	Р	0.798	0.2236	3.569	0.0002
Sam	F	0.886	0.2236	3.962	0
	Р	0.886	0.2236	3.962	0

Each Appraiser Vs Standard

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% CI (upper)
Janet	16	20	80	56.34	94.27
Chris	18	20	90	68.3	98.77
Sam	15	20	75	50.9	91.34

Each Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
Janet	F	0.5604	0.1581	3.545	0.0002
	Р	0.5604	0.1581	3.545	0.0002
Chris	F	0.8987	0.1581	5.684	0
	Р	0.8987	0.1581	5.684	0
Sam	F	0.5422	0.1581	3.429	0.0003
	Р	0.5422	0.1581	3.429	0.0003

Between Appraiser Agreement

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% CI (upper)		
All	10	20	50	27.2	72.8		
Between Appraiser Fleiss Kappa Statistic							

	Response	карра	SE карра	Ζ	p-value
All	F	0.4965	0.0577	8.6	0
	Р	0.4965	0.0577	8.6	0

All Appraisers Vs Standard

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% CI (upper)
All	10	20	50	27.2	72.8

3. Attribute Agreement Analysis: Ordinal data

Attribute Agreement Analysis: Ordinal data

created a day ago / modified 4 hours ago

Within Appraiser Agreement

ient sis

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% Cl (upper)
1	4	10	40	12.16	73.76
2	6	10	60	26.24	87.84

Within Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
1	1	0.7115	0.1826	3.897	0
	2	0.375	0.1826	2.054	0.02
	3	0.4886	0.1826	2.676	0.0037
	4	0.28	0.1826	1.534	0.0626
	5	0.1346	0.1826	0.7373	0.2305
	6	1	0.1826	5.477	0
	Overall	0.4687	0.0849	5.521	0
2	1	1	0.1826	5.477	0
	2	1	0.1826	5.477	0
	3	0.3182	0.1826	1.743	0.0407
	4	0.8137	0.1826	4.457	0
	5	1	0.1826	5.477	0
	6	-0.111	0.1826	-0.609	0.7286
	Overall	0.6685	0.0874	7.645	0

Within Kendall Coefficient of Concordance

Kendall Chi-Sq DF p-value

1	0.9224	24.91	9	0.0031	
2	0.7605	20.53	9	0.0149	

Each Appraiser Vs Standard

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% CI (upper)
1	4	10	40	12.16	73.76
2	6	10	60	26.24	87.84

Each Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
1	1	0.8693	0.1826	4.761	0
	2	0.5721	0.1826	3.133	0.0009
	3	0.7524	0.1826	4.121	0
	4	0.4526	0.1826	2.479	0.0066
	5	0.1285	0.1826	0.704	0.2407
	6	1	0.1826	5.477	0
	Overall	0.6268	0.0868	7.219	0
2	1	1	0.1826	5.477	0
	2	1	0.1826	5.477	0
	3	0.5937	0.1826	3.252	0.0006
	4	0.9111	0.1826	4.99	0
	5	1	0.1826	5.477	0
	6	0.148	0.1826	0.8108	0.2087
	Overall	0.7908	0.0884	8.951	0

Between Appraiser Agreement

	# Agreements	# Inspecte	9 d A	% Agreement	95% Cl (lower)	9 (L	5% Cl upper)		
All	2	2	10	20)	2.521		55.61	

Between Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
All	1	0.8383	0.0816	10.27	0
	2	0.625	0.0816	7.655	0
	3	0.4205	0.0816	5.149	0
	4	0.4583	0.0816	5.613	0
	5	0.3208	0.0816	3.928	0
	6	0.3333	0.0816	4.082	0
	Overall	0.499	0.0384	13	0

Between Kendall Coefficient of Concordance

	Kendall	Chi-Sq	DF	p-value
All	0.7655	41.34	9	0

All Appraisers Vs Standard

	#	#	%	95% Cl	95% CI	
	Agreements	Inspected	Agreement	(lower)	(upper)	
All	2	10	20		2.521	55.61

All	All Applaisers Fleiss Rappa Statistic							
	Response	Карра	SE Kappa	Z	p-value			
All	1	0.9346	0.1291	7.24	0			
	2	0.786	0.1291	6.089	0			
	3	0.673	0.1291	5.213	0			
	4	0.6819	0.1291	5.282	0			
	5	0.5643	0.1291	4.371	0			
	6	0.574	0.1291	4.446	0			

All Appraisers Fleiss Kappa Statistic

4. Process Capability Analysis: Width (Isl=0.8, target=0.85, usl=0.9)

Specifications

Lower Specification Limit:	0.8
Target:	0.85
Upper Specification Limit:	0.9
Specification Range (Tolerance)	0.1

Normality Test

Anderson-Darling Test Statistic	0.2326
Anderson-Darling p-value	0.794

Process Capability Statistics (Within)

Ср	0.8751
Cpk	0.8131
% Yield	99.02
Sigma	2.333

Process Capability Statistics (Overall)

Рр	0.8617
Ppk	0.8007
Cpm	0.8475
% Yield	98.9
Sigma	2.291

Process Performance (% Defective)

	Observed	Expected (Within)	Expected (Overall)
% Below LSL	1	0.7356	0.8151
% Above USL	1	0.2468	0.2819
Total	2	0.9824	1.097

Process Characteristics

Sample Size	100
Subgroup Size	5
Number of Subgroups	20
Sample Mean	0.8465
Standard Deviation (Within)	0.019
Standard Deviation (Between)	0.0193

III. Dataset: Statistical Process Control

1. X and Moving Range Chart - Yield

X Chart Statistics

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	17.08	14.95	16.09	15.91
Average	12.82	12.68	13.03	13.51
LCL	8.559	10.41	9.965	11.12

Moving Range Chart Statistics

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	5.232	2.791	3.763	2.946
Average	1.601	0.8543	1.152	0.9018
LCL	0	0	0	0

2. X bar and R/S Chart - Yield

X Chart Statistics

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	14.32	13.6	14.24	14.59
Average	12.82	12.68	13.03	13.51
LCL	11.32	11.75	11.81	12.43

R Chart Statistics

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	6.217	3.838	5.042	4.476
Average	3.103	1.915	2.516	2.233
LCL	0	0	0	0

3. np Chart: Defectives (n=50)

4. p Chart: Defectives

5. c Chart: Defects

6. u Chart: Defects

7. g Chart: Doses b/w medication errors

8. g Chart: Date of infection

9. CUSUM Chart: Distance

10. EWMA Chart: Distance

IV. Dataset: ParametricHypTests

1. 1 Proportion Test: Pass

1 Propo	ortion Test	: Pass								A assur	nptions	{၀ိ} test s
created 2 day	s ago / modified a	minute a	go									~~~
С	onclusion	At the event	e 5% lev : '1' in 'F	vel, reject the r Pass' is greater	ull hypo than '0.	othesis. Th .5'.	ere is suf	ficient	eviden	ce that the	e propo	rtion of th
Null Alternative	Hypothesis Hypothesis	The p The p	roporti roporti	on of the event ion of the even	'1' in 'Pa t '1' in 'F	ass' is less t Pass' is gre	han or eo ater than	qual to 1 '0.5'.	'0.5'.			
Hypothesis T	est Results					Charts o	f Pass					
Lower Cut-off	< Upper Cut-off	< Test S	tatistic	-Inf < 1.645 <	3.801					6	+ ↔	QÂ
p-value < alpha	1			1e-04 <	< 0.05							
95% Confidence	e Interval			(0.629)	3, Inf)	p-value	p-value			Τe	est Stati	Stic Test Statistic
Sample Sumr	mary					L 6				-00	_	
Sample Sample	e Size (n) Succ	ess Cou	int Pro	portion		Rejeo	t Do Not R	eject		Do N	lot Reject	Reject
Pass	80	1	57	0.7125		0	0.2	0.4	0.6		0	5
						Confid	dence Inte	erval		1 Pi	roportio	ons
						Proportion	3		S	Succe	esses	
									rtion			
									odo	0.5		Failures
									Ā			
						0.5	0.6 0.7	0.8	0.9	0	Pass	
											vdridDi	25

2. 2 Proportions Test: Line1 x Line2

3. Multiple Proportions Test: Locations

Multiple P	roportic	ons Test:	Locations		4	∖ assumpti	ons ζόζ te	st set
created 2 days ag	o / modified a	minute ago					~~~	
Cond	lusion	At the 5% l the claim t	evel, do not rejec hat the proportio	t the null hypothesis. ons of 1 are equal acro	There is insu ss all groups	ufficient ev 5.	idence to re	ejec
Null Hyp	othesis	The propor	tions of 1 are eq	ual across all groups.				
Alternative Hy	oothesis	The propor	tions of 1 are NO	l equal across all group	ps.			
Hypothesis Test	Results			Charts of 4 v	variables			
Test Statistic < Cri	tical Chi-Squ	are Cut-off	2.741 < 7.815			0 [+		Г L
p-value > alpha			0.4333 > 0.05					
Degrees of freedo	m		3	p-val	ue p-yalue	Test Test S	t Statistic	
Pairwise Compa	risons					-00		
PairlJ	pi - pj	Critical Val	ue Significant?	RejectDo N	Not Reject	Do No	RejectReject	
(Location1,Location	n2) 0.01	0.09	74 FALSE	0 0.	2 0.4 0.6	0	10	
(Location1,Location	n3) 0.05	0.11	55 FALSE		tions			
(Location1,Location	n4) 0.01	0.10	41 FALSE	S				
(Location2,Location	n3) 0.06	0.11	25 FALSE	.01 0.5				
(Location2,Location	n4) 0.02	0.10	08 FALSE	rope				
(Location3,Location	n4) 0.04	0.11	83 FALSE	Ê				
Sample Summa	ry			Location,	Location3	24		
	~:		Count Dropo	Var	iables			

Sample	Sample Size (n)	Success	Count	Proportion
Location1	100	1	7	0.07
Location2	100	1	6	0.06
Location3	100	1	12	0.12
Location4	100	1	8	0.08
Pooled Proportion	400	1	33	0.0825

4. 1 Mean t-Test: Values

T Weart Crest	: Values		📈 assumptions နီဝိ} test
created 2 days ago / mo	dified a day ago		
Conclus	ion At the 10% is less tha	ն level, reject the null hyp n '5'.	pothesis. There is sufficient evidence that the mean of 'Valu
Null Hypoth	esis The mean	of 'Values' is greater than	or equal to '5'.
Alternative Hypoth	esis The mean	of 'Values' is less than '5	N. C.
Hypothesis Test Resu	ilts		Charts of Values
Test Statistic < Lower Cu	it-off < Upper Cut-	off -2.562 < -1.397 < Inf	
p-value < alpha		0.0168 < 0.1	
90% Confidence Interva	I	(-Inf, 4.904)	p-value Test Statistic
Degrees of freedom		8	
Sample Summary			
	Values		0 0.2 0.4 0.6 -2 0
Count	9		Confidence Interval
Min	4.4		Hypothesized
Max	5.1		e e e e e e e e e e e e e e e e e e e
Mean	4.789		Values
Median	4.7		A state of the
Standard Deviation	0.2472		
Variance	0.0611		4.7 4.8 4.9 5 4.4 4.6 4.8 5

5. 2 Means t-Test: BTU

Standard Deviation	3.02	2.767
Variance	9.12	7.656
Anderson-Darling Statistic	0.4745	0.1896
Anderson-Darling p-value	0.2283	0.8951
Skewness	0.7075	-0.099
Kurtosis	0.784	-0.272

6. 2 Means t-Test (Paired Samples): Methods

R.			$ \bigcirc $ export $ \bigcirc $ copy $ \ge = 0 $ notes	s 🗁 0 files ⑦ help [] max ⑧ clos
reans t- t (Paired 2 Means t-Test (P	aired Sample	es): Methods		A assumptions
created 2 days ago / modified a	i day ago			
Conclusion	At the 5% level, difference ('Me	, reject the null hyp thod1' - 'Method2')	othesis. There is sufficient e is less than '0'.	vidence that the mean of the
Null Hypothesis Alternative Hypothesis	The mean of the The mean of th	e difference ('Metho e difference ('Metho	d1' - 'Method2') is greater th od1' - 'Method2') is less thai	an or equal to '0'. n '0'.
Hypothesis Test Results			Charts of 2 variables	
Test Statistic < Lower Cut-off	< Upper Cut-off -4	4.023 < -2.132 < Inf		
p-value < alpha		0.0079 < 0.05		
95% Confidence Interval		(-Inf, -6.431)	p-value	Test Statistic
Degrees of freedom		4		
Sample Summary			Reject Do Not Reject	Reject Do Not Reject
М	ethod1 - Method2		0 0.2 0.4 0.	6 -4 -2 0 2
Count	5		Confidence Interval	Summary
Min	-25.2		Hypothe Differe	sized of the second sec
Max	-5.7		les	
Mean	-13.68		Method -	Method2
Median	-12.9		>	
Standard Deviation	7.603		-20 -15 -10 -5 0	-25 -20 -15 -10 -5
Variance	57.81			Data

Sample Summary

	Method1 - Method2
Count	5
Min	-25.2
Max	-5.7
Mean	-13.68
Median	-12.9
Standard Deviation	7.603
Variance	57.81
Anderson-Darling Statistic	NA
Anderson-Darling p-value	NA
Skewness	-0.843
Kurtosis	0.4109

7. One-way ANOVA: Routes

ां श् One-	way								û export ा⊂ copy ፤Ξ 0 notes 🗁 0 files ⑦ help [] max ⊗ clo
ANC	MA One	-wa	y ANO	VA: Ro	outes				A assumptions {} test setup
	created	2 day	s ago / moc	dified 5 min	utes ago)			
		Со	nclusi	on At	the 20 ⁰ eans of	% level, do the levels	not reje of 'Route	ct the r es' are	null hypothesis. There is insufficient evidence to reject the claim that the all equal.
oute2	N	ull F	lypothe	e <mark>sis</mark> Th	e mear	ns of the le	vels of 'F	outes'	are all equal.
21 dl	Alternat	ive ł	Hypothe	esis Th	e mear	ns of the lev	els of 'Re	outes' a	are NOT all equal.
Routes	Hypothes	is Te	est Resu	ilts					Charts of 3 variables
21	Test Statis	tic <	F-Critical	1.009 < 1	1.653				
Data riables	p-value > a	alpha		0.3706	> 0.2				
	ANOVA T	able							p-value Test Statistic p-value Test Statistic
		DF S	Sum Sq 🛛	MeanSq	FValue	p-value F	-Critical		_00 00
	Routes	2	188.2	94.11	1.009	0.3706	1.653		Reject Do Not Reject Do Not Reject Reject
	Residuals	60	5,594	93.24	NA	NA	NA		0 0.2 0.4 0.6 0 1 2
	Total	62	5,783	NA	NA	NA	NA		Tukey Confidence Intervals Summary
	All Pairwi	se C	omparis	sons					Route3-Route2 60
			Lower 8 Cl	^{30%} M	ean U C	pper 80% I	Signif	icant?	
	Route2– Route1			-6.747 -1	.571	3.60	5	FALSE	Route2-Route1
	Route3-			-2 557 2	619	7 79	5	EAL SE	Variables

All Pairwise Comparisons

	Lower 80% Cl	Mean	Upper 80% Cl	Significant?
Route2– Route1	-6.747	-1.571	3.605	FALSE
Route3– Route1	-2.557	2.619	7.795	FALSE
Route3– Route2	-0.986	4.19	9.366	FALSE

Sample Summary

	Route1	Route2	Route3
Count	21	21	21
Min	20	10	20
Max	48	44	65
Mean	33.29	31.71	35.9
Median	33	33	34
Standard Deviation	8.861	8.451	11.39
Variance	78.51	71.41	129.8
Anderson-Darling Test Statistic	0.3627	0.2358	0.5409
Anderson-Darling p-value	0.4088	0.7595	0.1454
Skewness	0.0985	-0.588	1.048
Kurtosis	-1.272	0.687	1.181

8. Blocked One-way ANOVA: Routes x Make

NOVA Block	ked 2 days	One-v ago / mod	Vay Al lified 3 mir	NOVA nutes ago	: Route	es x Ma	ake	🛆 assumptions 🖧 te
	Со	nclusio	on _{cl}	t the 109 aim tha	% level, do t the mean	not rejeo is of the	t the nu evels of	ull hypothesis. There is insufficient evidence to reject f 'Routes' are all equal across the levels of 'Make'.
N	ull H	ypothe	sis Tl	ne mear	ns of the le	vels of 'R	outes' a	are all equal across the levels of 'Make'.
Alternat	ive H	lypothe	sis Th	ne mean	is of the lev	els of 'Ro	utes' ar	e NOT all equal across the levels of 'Make'.
Hypothes	is Te	st Resu	lts					Charts of 4 variables
Test Statis	tic < F	-Critical	1.087 <	2.396				© F ↔ Q ⋒
p-value > a	lpha		0.3439	> 0.1				
ANOVA Ta	able							p-value Test Statistic p-value Test Statistic
	DF S	um Sq N	∕leanSq	FValue	p-value F-	-Critical		-00
Routes	2	188.2	94.11	1.087	0.3439	2.396		RejecDo Not Reject Do Not Rejecteject
Make	2	574.6	287.3	3.32	0.0432	NA		0 0.2 0.4 0.6 0 2 4
Residuals	58	5,020	86.55	NA	NA	NA		Tukey Confidence Interval: Summary
Total	62	5,783	NA	NA	NA	NA		Route3-Route2 60
All Pairwis	se Co	mparis	ons					
		Lower 9 Cl	0% N	lean Ul CI	pper 90%	Signifi	cant?	
Pouto2								Route2-Route1

All Pairwise Comparisons

	Lower 90% Cl	Mean	Upper 90% Cl	Significant?
Route2– Route1	-5.467	1.571	8.61	FALSE
Route3– Route1	-9.66	-2.619	4.419	FALSE
Route3– Route2	-11.23	-4.19	2.848	FALSE

Sample Summary

	Route1	Route2	Route3
Count	21	21	21
Min	20	10	20
Max	48	44	65
Mean	33.29	31.71	35.9
Median	33	33	34
Standard Deviation	8.861	8.451	11.39
Variance	78.51	71.41	129.8
Anderson-Darling Test Statistic	0.3627	0.2358	0.5409
Anderson-Darling p-value	0.4088	0.7595	0.1454
Skewness	0.0985	-0.588	1.048
Kurtosis	-1.272	0.687	1.181

9. 1 Variance Chi-Square Test: AtoBDist

Sample Summary

	AtoBDist
Count	125
Min	-7.303
Max	8.023
Mean	0.4417
Median	0.13
Standard Deviation	3.491
Variance	12.19
Anderson-Darling Statistic	0.8911
Anderson-Darling p-value	0.0222
Skewness	0.1245
Kurtosis	-0.823

10. 2 Variances Test: BTU

11. 2 Variances Test: Summary data

	3				\triangle export \square copy $= 0$ note	s 🗁 0 files ⑦ help 📋 max 🛞 close
Group 2 Var Variable T	ances 2 Variances	s Test:	Summary o	data		🛆 assumptions 👌 test setup
Data	created 2 days ago	/ modified a	day ago			
Variables	Concl	usion	At the 5% leve claim that the	l, do not reject the n variance of 'A' is equ	ficient evidence to reject the	
	Null Hypo Alternative Hypo	o thesis othesis	The variance o The variance o	of 'A' is equal to the v f 'A' is NOT equal to tl	ariance of 'B'. he variance of 'B'.	
	Hypothesis Test F	Results				
	Lower Cut-off < Tes	t Statistic	< Upper Cut-off	0.3066 < 2 < 2.814		
	p-value > alpha			0.185 > 0.05	p-value	Test Statistic
	95% Confidence Int	erval		(0.7108, 6.522)	p-value	Test Statistic
	Degrees of freedom	ı		(11, 18)		-00 000 00
	Sample Summary	/			Reject Do Not Reject 0 0.2 0.4 0.6	RejectDo Not Reject
		A B			Confidence Internal	
	Count	12 19	1		Hypothesized	
	Standard Deviation	2 1.414			Ratio	
	Variance	4 2				
					2 4 6	

12. Multiple Variances Test: Routes

श					e	export 🕞 copy 📃 🛛 notes 🗁 🛛 files 🕐 help 🖕 'max 🛞 🖉	clos
Mult Varia Te	Multiple Vari	ances Te	est: Rou	utes		assumptions of test set	up
Route1	created 2 days ago / m	odified a minut	e ago				
11 21	Conclus	ion At ti clair	he 20% lev n that the	vel, do not rej variances are	ect the null h e equal acros	hypothesis. There is insufficient evidence to reject the oss all groups.	
ite2	Null Hypoth	esis The	variances	are equal ac	oss all group	ıps.	
Route3	Alternative Hypotr	iesis The	variances	are NOT equa	l across all gr	groups.	
	Hypothesis Test Res	ults				Charts of 3 variables	
21	Lower Cut-off < Test St	atistic < Upp	er Cut-	0.1055	< 0.5676 <		1
es		off		0	2.393	The second	
	p-value > alpha Degrees of freedom		(2, 60)		p-value lest Statistic p-value Test Statistic		
	Sample Summary					-00 00000000000000000000000000000000000	
	Sample Sammary	Route1	Route2	Route3		RejectDo Not Reject Reject 0 0.5 1 0 2 4 6	
	Count	21	21	21		<u>Current and</u>	
	Min	20	10	20			
	Max	48	44	65			
	Mean	33.29	31.71	35.9			
	Median	33	33	34			
	Standard Deviation	8.861	8.451	11.39			
	variance	/8.51	/1.41	129.8		Data	
erson	-Darling Statistic	0.3627	0.235	8 0.5409)		
lerson	-Darling p-value	0.4088	0.759	5 0.1454	ŀ		
wness	5	0.0985	-0.58	8 1.048	3		
tosis		-1.272	0.68	7 1.181			

V. Dataset: NonParametricHypTests

1. 1 Sample Sign Test: Fillwt

থ				<u></u>	export 🕞 copy	i≡0notes 🗁	0 files ⑦ help	[]max ⊗ clo	se
1 Samp Sign Te	1 Sample Sign Te	est: Fillwt				A	assumptions	Cost test setup	
d	created 2 days ago / modified	a day ago					2 6	~~~ ·····	
38	Conclusior	At the 15% le is less than '1	vel, reject the n '.	ull hypothesis	. There is suffic	cient evidence	that the medi	an of 'Fillwt'	
	Null Hypothesis	s The median o	f 'Fillwt' is greate	er than or equa	al to '1'.				
	Alternative Hypothesis	s The median of	of 'Fillwt' is less t	than '1'.					
	Hypothesis Test Results			Charts of F	illwt				
	Test Statistic < Lower Cut-of off	f < Upper Cut-	15 < 16 < Inf				0 🕂 🕂		
	p-value < alpha		0.1279 < 0.15	p- p-va	value	Tes	Test Statistic Test Statistic		
	87.21% Confidence Interval		(-Inf, 0.9448)			_00		~	
	Sample Size for Test (exclude Sample Median	ing ties)	38	Reject 0	Do Not Reject 0.2 0.4		Reject Do Not	Reject 7 18	
			0.95	Confide	nce Interval		Summary	,	
	sample summary	illwt			Hyp	othesized Median			
	Count	38				bles			
	Min).5539							
	Max	1.57				-			
	Median	1.002		0.85	0.9 0.95	1 0.5	1 Data	1.5	
	Wedian	0.95					Data		
Median	1	0.93							
Standa	rd Deviation	0.2651							
Variand	e	0.0703							
Anders	on-Darling Statistic	1.061							
Anders	on-Darling p-value	0.0077							
Skewne	ess	0.5664							
Kurtosi	s	-0.329							

2. 1 Sample Wilcoxon Signed Ranks Test: Fillwt

थ				∐ export 🕞 copy 📃 0	notes 🗁 0 files (?) help 📜 max (🗵 close		
1 Sam Wilcox Test	1 Sample Wilcox created 2 days ago / modifie	kon Signed R d a day ago	anks Test: F	illwt	assumptions $\{ \widehat{0} \}$ test setup		
38	Conclusior	At the 15% lev claim that the	he null hypothesis. There is insu ' is greater than or equal to '1'.	e null hypothesis. There is insufficient evidence to reject the is greater than or equal to '1'.			
	Null Hypothesis Alternative Hypothesis	The median of The median of	f ' Fillwt' is greate r 'Fillwt' is less thar	than or equal to '1'. o '1'.			
	Hypothesis Test Results			Charts of Fillwt			
	Lower Cut-off < Test Statist	ic < Upper Cut-off	296 < 362 < Inf				
	p-value > alpha		0.4538 > 0.15				
	85% Confidence Interval Significance Level Sample Size for Test (excluding ties) Estimated Median		(-Inf, 1.03)	p-value p-value	Test Statistic Test Statistic		
			38		-∞ ∞		
			0.9959	Reject Do Not Reject	Reject Do Not Reject .6 200 300 400		
	Sample Summary			Confidence Interval	Summarv		
		Fillwt		Hypothesized Median	, , , , , , , , , , , , , , , , , , ,		
	Count	38					
	Max	1.57			Aarii		
	Mean	1.002					
	Median	0.93		0.98 1 1.02	0.5 1 1.5 Data		
Standa	rd Deviation	0.2651					
Variand	e	0.0703					
Anders	on-Darling Statistic	1.061					
Anders	on-Darling p-value	0.0077					
Skewne	ess	0.5664					
Kurtosi	s	-0.329					

- -

3. Paired Samples Sign Test: Drug A, B

থ				🖞 export 🕞 copy 📃 0 notes 🗁 0 files ⑦ help [] max 🛞 close				
Paire Samp Sign T	ed less est Paired Samples S created 2 days ago / modified	Sign Test: D a day ago	rug A, B	À assumptions ᡬ₀} test setup				
Drug A	Conclusion	Conclusion At the 10% level, do not reject the null hypothesis. There is insufficient evidence to claim that the median of the differences ('Drug A' - 'Drug B') is equal to '0'.						
Drug B	Null Hypothesis Alternative Hypothesis	The median o The median of	f the difference	es ('Drug A' - 'Drug B') is equal to '0'. s ('Drug A' - 'Drug B') is NOT equal to '0'.				
	Hypothesis Test Results			Charts of 2 variables				
	Test Statistic < Lower Cut-off	< Upper Cut-off	2 < 3 < 6					
	p-value > alpha		0.1797 > 0.1	n value Test Statistic				
	Sample Size for Test (excludi	ng ties)	(-5, 1)	p-value Test Statistic				
	Median of Differences		-1	-00 000				
	Sample Summary			Reject Do Not Reject RegetNot Reject 0 0.2 0.4 0.6 0 5 10				
	1	orug A - Drug B		Confidence Interval Summary				
	Count	10		Difference				
	Max	6		U B B C B C C C C C C C C C C C C C C C				
	Mean	1.1		- ar				
	Median	1						
	Standard Deviation	2.378		Data				
Variance	:		5.656					
Anderso	n-Darling Statistic		0.4277					
Anderso	n-Darling p-value		0.2479					
Skewnes	S		0.4721					
Kurtosis			1.759					

4. Paired Samples Wilcoxon Signed Ranks Test: Drug A, B

হ		·		∴ export 🕞 copy := 0 notes 🗁 0 files ⑦ help [] max ⊗ close				
Pairo Samp Wilco Tes	Paired Samples Wilcoxon Signed Ranks Test: Drug A, B							
Drug A	Conclusio	n At the 10% level of the At the 10% level of the At the A	At the 10% level, do not reject the null hypothesis. There is insufficient evidence to reject the claim that the median of the differences ('Drug A' - 'Drug B') is equal to '0'.					
Drug B	Null Hypothes Alternative Hypothes	is The median o	f the differences ('I f the differences ('D	(' Drug A' - 'Drug B') is equal to '0'. Drug A' - 'Drug B') is NOT equal to '0'.				
	Hypothesis Test Result	S		Charts of 2 variables				
	Lower Cut-off < Test Statis	stic < Upper Cut-	10 < 10.5 < 43	@ ⊡ ↔ Q @ []				
	p-value > alpha		0.1651 > 0.1	p-value Test Statistic				
	90% Confidence Interval Significance Level		(-2.5, 5.116e-05) 0.1	-00 00				
	Sample Size for Test (excl	uding ties)	9	Reject Do Not Reject Reject Do Not Reject				
	Median of Differences		-1	Confidence Interval				
	Sample Summary			Hypothesized Difference				
	Count	Drug A - Drug B						
	Min	-6						
	Max	3						
	Mean	-1.1		-2 -1 0 -5 Data				
Median			-1					
Standard	Deviation	2.3	378					
Variance		5.6	56					
Anderson	-Darling Statistic	0.42	77					
Anderson	Darling n value	0.24	170					
Skowpeer	-bailing p-value	0.24						
Skewness	•	-0.4	1/2					
Kurtosis		1.7	59					

5. Mann Whitney Wilcoxon Test: BTU (normal approximation)

er er		•		① export ⊡ copy :Ξ 0 notes ▷ 0 files ⑦ help □ max ⊗ clos
Mar Whitu Wilco Tes	Mann Whitney st created 2 days ago / modif	Wilcoxon Te ied a day ago	est: BTU (r	(normal approximation) $($ assumptions $($ test setup
40	Conclusio	n At the 15% long that the claim that the	evel, do not rej ne median of 'E	reject the null hypothesis. There is insufficient evidence to reject the f 'BTU.In_1' is greater than or equal to the median of 'BTU.In_2'.
J.In_2 50	Null Hypothes Alternative Hypothes	is The median	of 'BTU.In_1' is	' is greater than or equal to the median of 'BTU.In_2'. ' is less than the median of 'BTU.In_2'.
	Hypothesis Test Result	S		Charts of 2 variables
	Lower Cut-off < Test Statistic < Upper Cut-off p-value > alpha 85% Confidence Interval Significance Level Sample Size for Test (excluding ties) Median of Differences		ff 871 < 908 < 0.2287 > 0. (-Inf, C 0.	3 < Inf > 0.15 f, 0.2) 0.15 40 NA Reject Do Not Reject P.Value P.V
	Sample Summary			Confidence Interval
	Count Min Max Mean Median	BTU.In_1 BTU.I 40 4 2 18.26 16 9.908 10 9.59 10	n_2 50 .97 .06 .14 .29	BTU.In_2 BTU
tandard	Deviation	3.02	2.767	7
ariance/		9.12	7.656	5
ndersor	n-Darling Statistic	0.4745	0.1896	5
ndersor	n-Darling p-value	0.2283	0.8951	1
kewnes	5	0.7075	-0.099	9
urtosis		0.784	-0.272	2

6. Mann Whitney Wilcoxon Test: Task 1, 2 (Exact test)

গ্র			· · · ·	û export 🕞 copy 🗄 0 n	otes 🗁 0 files ⑦ help []max ⊗ clos
Mann Whitne Wilcoxe Test	Mann Whi	tney Wilcoxon T	est: Task 1, 2 (Exact test)	🔬 assumptions နတ္ခ်ို test setup
	Con	clusion At the 159 'Task1' is g	% level, reject the null greater than the med	hypothesis. There is sufficio ian of 'Task2'.	ent evidence that the median of
ask2	Null Hy Alternative Hy	pothesis The media pothesis The media	an of 'Task1' is less tha an of 'Task1' is greate	n or equal to the median of ' r than the median of 'Task2	Task2'. '.
	Hypothesis Test	Results		Charts of 2 variables	
	Lower Cut-off < Up p-value < alpha 85% Confidence In Significance Level Sample Size for Tes Median of Differen	per Cut-off < Test Statis terval st (excluding ties) ices	stic -Inf < 137 < 138 0.1497 < 0.15 (4.42e-05, Inf) 0.15 15 5.5	P-value p-value Reject Do Not Reject	Image: Contract of the state of the st
	Sample Summar	у		Confidence Interval	Summary
	Count Min Max Mean Median	Task1 Task2 15 15 31 29 85 73 49.2 44.6 48 44		Hypothesized Difference	
andard De	eviation	14.14 12.68			
ariance		200 160.7			
nderson-D	arling Statistic	0.4849 0.6214			
nderson-D	arling p-value	0.1927 0.0856			
ewness		1.209 1.119			
urtosis		1.677 1.105			

7. Kruskal Wallis Test: Drug

र			∱ export	🗁 0 files
Wallis Test Kruskal Wallis Test	est: Drug			A assumptions S test setup
created 2 days ago / modifie	d 2 minutes ago			
Conclusio	n At the 20% lev medians of th	vel, reject the nu ne levels of 'Drug	ll hypothesis. There is sufficio ' are NOT equal.	ent evidence that the
Null Hypothes Alternative Hypothes	is The medians of is The medians	of the levels of 'D of the levels of 'I	rug' are equal. Drug' are NOT equal.	
Hypothesis Test Results			Charts of 4 variables	
Cut-off < Test Statistic 4.64	2 < 9.36			
10 Degrees of freedom	3		p-value	Test Statistic
s Kruskal Wallis Ranks Tal	ole			-00 00
Sample Sample Size (n) Sa	mple Median Ave	rage Rank	Reject Do Not Reject	Do Not Reject Reject
Drug A 10	11	14.45	0 0.2 0.4 0.6	5 -5 0 5 10
Drug B 10	12	17.55	Summary	
Drug C 10	15.5	29.5	Drug D	
Drug D 10	12.5	20.5		
Pairwise Comparisons				
Comparison Zij Z*	Significant?			
Drug B,Drug A 0.5929 2.12	8 FALSE			
Drug C,Drug A 2.879 2.12	8 TRUE		Data	
airwise Comparisons				

P

Comparison	Zij	Z*	Significant?
Drug B,Drug A	0.5929	2.128	FALSE
Drug C,Drug A	2.879	2.128	TRUE
Drug D,Drug A	1.157	2.128	FALSE
Drug C,Drug B	2.286	2.128	TRUE
Drug D,Drug B	0.5643	2.128	FALSE
Drug D,Drug C	1.721	2.128	FALSE

Sample Summary						
	Drug A	Drug B	Drug C	Drug D		
Count	10	10	10	10		
Min	7	10	10	8		
Max	14	18	19	19		
Mean	11	12.1	15.3	12.9		
Median	11	12	15.5	12.5		
Standard Deviation	2.108	2.378	2.869	4.122		
Variance	4.444	5.656	8.233	16.99		
Anderson-Darling Statistic	0.564	0.7885	0.2172	0.2897		
Anderson-Darling p-value	0.1072	0.0264	0.7817	0.5371		
Skewness	-0.8	1.835	-0.376	0.3627		
Kurtosis	0.4781	4.346	-0.348	-1.117		

8. Friedman Test: Drug x Subject

Pairwise Comparisons

Comparison	Zij	Z*	Significant?
Drug B,Drug A	1.386	2.394	FALSE
Drug C,Drug A	3.551	2.394	TRUE
Drug D,Drug A	1.299	2.394	FALSE
Drug C,Drug B	2.165	2.394	FALSE
Drug D,Drug B	0.0866	2.394	FALSE
Drug D,Drug C	2.252	2.394	FALSE

Sample Summary

	Drug A	Drug B	Drug C	Drug D
Count	10	10	10	10
Min	7	10	10	8
Max	14	18	19	19
Mean	11	12.1	15.3	12.9
Median	11	12	15.5	12.5
Standard Deviation	2.108	2.378	2.869	4.122
Variance	4.444	5.656	8.233	16.99
Anderson-Darling Statistic	0.564	0.7885	0.2172	0.2897
Anderson-Darling p-value	0.1072	0.0264	0.7817	0.5371
Skewness	-0.8	1.835	-0.376	0.3627
Kurtosis	0.4781	4.346	-0.348	-1.117

VI. Dataset: Regression

1. Simple Regression: Score1 x Score2

Regression Model

Score2 = 1.118 + (0.2177) * (Score1)

Regression Statistics

Correlation Coefficient, R	0.9784
R Squared	0.9572
Adjusted R Squared	0.9511
Count	9

Coefficient Table

	Estimate	Std. Error	t value	p- value	NALowerCI95	NAUpperCl95
(intercept)	1.118	0.1093	10	0	NA	NA
Score1	0.2177	0.0174	13	0	NA	NA

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	1	2.542	2.542	156.6	0
Residuals	7	0.1136	0.0162	NA	NA
Total	8	2.656	NA	NA	NA

2. Multiple Regression: HeatFlux

Coefficient Table

	Estimate	Std. Error	t value	p- value	95% Cl (lower)	95% Cl (upper)
(intercept)	389.2	66.09	5.9	0	259.6	518.7
East	2.125	1.214	1.7	0.0925	-0.256	4.505
South	5.318	0.9629	5.5	0	3.431	7.206
North	-24.13	1.869	-13	0	-27.79	-20.47

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	3	12,834	4,278	57.87	0
Residuals	25	1,848	73.92	NA	NA
Total	28	14,682	NA	NA	NA

Variation Inflation Factors

	VIF Value
East	1.122
South	1.206
North	1.091

Variables Not in Model

3. Logistic Regression: RestingPulse

Estimated Response Model

	Coefficients	S.E.	Z	p-value	Lower 90% CI	Upper 90% Cl
(intercept)	-1.987	1.679	-1.183	0.2367		
Smokes	-1.193	0.553	-2.157	0.031	-2.103	-0.283
Weight	0.025	0.0123	2.042	0.0412	0.0049	0.0452

	Odds Ratio	Lower 90% CI	Upper 90% Cl
Smokes	0.3033	0.1221	0.7532
Weight	1.025	1.005	1.046

Test of Model Fit

	Chi-Square	DF	p-value
Model Significance	7.574	2	0.0227
Pearson	88.63	89	0.4911
Deviance	93.64	89	0.3477
Hosmer-Lemeshow	5.037	8	0.7536

Test of Multicollinearity

Variable VIF Smokes 1.042 Weight 1.042

VII. Dataset: DOE_Full

1. FullDOE_DesignWizard

Your design summary:				
Factors	3			
Levels per factor	2			
Center points per block	0			
Replicates	1			
Number of blocks	1			
Total runs:				
Corner points	8			
Center points	0			
Total runs	8			
Resolution	Full			
Resolution	Full			

2. FullDOE_Analyzer

Half Normal Effects

Term	Effect Size
B-Temp	20.5
C-Power	17
BC	21.5

Factorial Plots

Model Equations

Coded Model	Response = 66.5 + -10.75*BC + -10.25*B + -8.5*C
Uncoded Model	Response = -199 + -0.86*BC + -10.25*B + -0.68*C

Effects Coefficient

	Effect Size	Coefficients	Standard Error	80% CI (lower)	80% CI (upper)
Constant	NA	66.5	1.759	63.8	69.2
BC	-21.5	-10.75	1.759	-13.45	-8.053
B-Temp	-20.5	-10.25	1.759	-12.95	-7.553
C-Power	-17	-8.5	1.759	-11.2	-5.803

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Model	3	2,343	781	31.56	0.003
BC	1	924.5	924.5	37.35	0.0036
B-Temp	1	840.5	840.5	33.96	0.0043
C-Power	1	578	578	23.35	0.0084
Residuals	4	99	24.75	NA	NA
Total	7	2,442	NA	NA	NA

Model Statistics

Standard Error	4.975
R Squared	0.9595
Adjusted R Squared	0.9291

VIII. Dataset: DOE_Fractional

Guide Me 💙 2 Levels	A Factors	V: 8 runs	Setup	Replicates	Summary
our design summary:	/	/		/	
Factors	4				
evels per factor	2				
Center points per block	0				
Replicates	2				
Number of blocks	2				
Fotal runs:					
Corner points	16				
Center points	0				
Total runs	16				
Resolution	IV				
'his design will be able to other two-factor interacti Create Design	o estimate ma ons.	in effects, bu	t some two-	factor interacti	ons will be aliased (confounded) wi

1. FractionalDOE_DesignWizard
2. FractionalDOE_Analyzer

dD ∴ export 🕞 copy := 0 notes 🗁 0 files ? help []max ⊗ close DOE Analyz FractionalDOE_Analyzer restore default 👸 study setup created 2 days ago / modified 5 minutes ago Model Output Factorial Plots **Design Summary** Number of Runs 16 Half normal effects plot Number of Factors 4 Number of center points per block 0 * Not In Model Percentage In Model Number of blocks 2 • In Model 0.5 Number of replicates 2 Not In Model Runs per replicate 8 Significance (α) Level 0 0.05 20 15 10 Number of Responses |Std Effect| Pareto effects plot 1 Factor Information Factor Name Coded Levels Uncoded Levels A Factor 1 -1, 1 -1, 1 B Factor 2 -1, 1 -1, 1 C Factor 3 -1, 1 -1, 1 D Factor 4 -1, 1 -1, 1 0 10 15 20 Std Effect

Half Normal Effects

Term	Effect Size
A-Factor 1	6.375
B-Factor 2	15.38
C-Factor 3	1.875
D-Factor 4	20.88
AC	7.625
BC	10.12

Model Output

Model Equations

Coded Model	Response = 70.06 + 10.44*D + -7.69*B + 5.06*BC + -3.81*AC + 3.19*A + -0.94*C
Uncoded	Response = 70.06 + 10.44*D + -7.69*B + 5.06*BC + -3.81*AC + 3.19*A +
Model	-0.94*C

Factorial Plots

Effects Coefficient

	Effect Size	Coefficients	Standard Error	95% CI (lower)	95% CI (upper)
Constant	NA	70.06	4.16	60.47	79.66
D-Factor 4	20.87	10.44	4.16	0.8437	20.03
B-Factor 2	-15.37	-7.687	4.16	-17.28	1.906
BC	10.12	5.062	4.16	-4.531	14.66
AC	-7.625	-3.812	4.16	-13.41	5.781
A-Factor 1	6.375	3.187	4.16	-6.406	12.78
C-Factor 3	-1.875	-0.938	4.16	-10.53	8.656

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Block	1	7.563	7.563	0.0273	0.8728
Model	6	3,508	584.6	2.111	0.1618
D-Factor 4	1	1,743	1,743	6.294	0.0364
B-Factor 2	1	945.6	945.6	3.414	0.1018
BC	1	410.1	410.1	1.481	0.2583
AC	1	232.6	232.6	0.8398	0.3863
A-Factor 1	1	162.6	162.6	0.587	0.4656
C-Factor 3	1	14.06	14.06	0.0508	0.8274
Residuals	8	2,216	276.9	NA	NA
Total	15	5,731	NA	NA	NA

Model Statistics

Standard Error	16.64
R Squared	0.6134
Adjusted R Squared	0.2752

IX. Dataset: DOE_General

1. GeneralDOE_DesignWizard

A			🖞 export 🦷	E] copy ⋮⊟	0 notes 🗁	ofiles ?	help []max	🛛 🛞 close
Design Wizard	GeneralD created a day ago	OE_Design	Wizard					
	Guide Me 🔰 3	+ Levels > 3	Factors	Setup	> Pov	ver	Summary	^
Y	our design sum	mar y :						
F	Factors	3						
1	Levels	3,2,2						
F	Replicates	2						
1	Total runs:							
	Runs	12						
	Replicates	2						
	Total runs	24						
	Create Decian							
	Create Design							-
4	•							•

2. GeneralDOE_Analyzer

	Ľ	j export 📭	copy :=0	notes 🗁 0 fil	es (?) help [_] max (X)
^{lyzer} Gener	alDOE And	alyzer		\rightarrow	and a facult () at which a set
created a d	ay ago / modified	2 minutes ago	0		re default (0 3 study set
	Sum	mary M	odel Output	Factorial Plot	
Docign Sum	many				
Number of P	ina 24				
Number of E	artors 3				
Number of bl	ocks 2				
Number of re	ours 2				
Runs per rep	icate 12				
Significance (
Number of R	esponses 1				
Number of K					
Factor Infor	mation				
Factor Nam	e	Coded Levels	Unco Leve	oded Is	
A	Percen Carbonatior	t 1	, 2, 3	10, 12, 14	
В	Pressure	2	1, 2	25, 30	
C	Line Speed	1	12	200 250	

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Block	1	1.042	1.042	1.639	0.2187
Model	6	325.4	54.24	85.36	0
A-Percent Carbonation	2	252.7	126.4	198.9	0
B-Pressure	1	45.38	45.38	71.41	0
C-Line Speed	1	22.04	22.04	34.69	0
AB	2	5.25	2.625	4.131	0.0358
Residuals	16	10.17	0.6354	NA	NA
Total	23	336.6	NA	NA	NA

Model Statistics

Standard Error	0.7971
R Squared	0.9698
Adjusted R Squared	0.9566

main effect plots 🔤 interaction plots

