

2023 EngineRoom Validation Kit

EngineRoom Software Validation Kit

Welcome!

MoreSteam is dedicated to providing high-quality software and excellent customer service to our users. We recognize that your company may operate in a regulated environment and, as such, may need to document validation for your intended use of our software. To that end, we have prepared this software validation kit. Among other things, this kit provides documentation that our software has been rigorously tested against independent documented sources not affiliated with MoreSteam to ensure accuracy and reliability of the statistical analyses and output. The instructions and datasets in this documentation can be used as baseline data and results to compare with EngineRoom during the validation process.

In addition, this document provides information about our development lifecycle and the practices we use when validating EngineRoom prior to release. It includes the following:

- 1. Cover Letter
- 2. EngineRoom Software Development Life Cycle
- 3. EngineRoom Software Testing Protocol
- 4. EngineRoom Technical Specifications
- 5. EngineRoom Output validated against National Institute of Standards and Technology (NIST) Datasets
- 6. A link to resources housed within EngineRoom software containing datasets and output for several statistical tools. These in-applications resources can be refreshed and/or revisited for just-in-time validation assessments. A validated output file of numerically and visually accurate results for the tests provided by in the above project file, intended for comparison.

Follow these Instructions to run the validation procedures, i.e., by generating analytic outputs, which EngineRoom generates based on your commands, and matching the generated outputs with validated outputs:

- First, ensure you have access to EngineRoom software via an active account and subscription. If you do not have an account or active subscription, you can either obtain a trial subscription <u>here</u> or by contacting MoreSteam at <u>support@moresteam.com</u>.
- Next, access the <u>EngineRoom Validation</u> project housed within your EngineRoom subscription. Clicking the EngineRoom Validation project link should open the EngineRoom application. The EngineRoom Validation project will appear on EngineRoom's Welcome screen. Select the "Launch Project" button and access the project. In the event the EngineRoom Validation project does not appear in your account, or you have any difficulty accessing the project, please contact MoreSteam.

- 3. The EngineRoom Validation project includes multiple data sources (data sets) appearing on the left side of the workspace, and multiple completed studies (including graphical and numerical outputs) on the right side of the workspace. When selected, the completed studies are automatically refreshed based on the data sources relating to the studies.
- 4. Next, access the Validated EngineRoom Output PDF file provided by this Kit (the validated output and links to the pdf files can be located in the Table of Contents).
- 5. Compare the outputs generated by EngineRoom in the Validation Project the against the Validated EngineRoom Output.

Note:

Acceptable differences may be found because of:

- differences in browsers or browser settings (e.g.: colors on graphs)

- minor differences in the formatting of output in EngineRoom (e.g. line thickness, font appearance, etc.)

Other than acceptable differences, the multiple Validated EngineRoom outputs should match the outputs generated by the EngineRoom Validation project studies.

Compliance with CFR Title 21 – Part 11

- For purposes of U.S. Food and Drug Administration (FDA) validation, EngineRoom should be considered a tool. EngineRoom customers who are FDA-regulated might be expected to validate systems built using the EngineRoom application. Because EngineRoom is a tool, the user must demonstrate to the FDA that EngineRoom is being used correctly. See "Complying with United States Code of Federal Regulations, Title 21 Part 11" in Appendix 1: "FDA-related issues" in "The Quality Imperative" for more information.
- Customers can re-create analyses by saving and running/refreshing the provided EngineRoom Validation Project, which contains the aforementioned multiple data sources and studies with output. The study outputs represent the correct outputs for various data configurations and study settings and are included in a PDF file which can be used to check the results from the analyses.

EngineRoom Statistical Software provides password protection for viewing, opening, saving, and modifying project files. This protection serves as validation for the ongoing use and storage of project files and data. For complete control, password protection should be combined with a file or source control system to verify dates, times, and approved access.

At MoreSteam, we are committed to continuous improvement and strive to keep raising the bar in the field of quality improvement. If you have any questions regarding our validation policies and processes, please contact our Support Team by visiting https://www.moresteam.com/engineroom/support.cfm.

Sincerely,

Peg Pennington, President MoreSteam.com LLC 9961 Brewster Lane Powell, OH 43065

Table of Contents

Software Development Life Cycle

<u>Contents</u>

EngineRoom Software Verification and Validation

EngineRoom Technical Specifications

System Requirements Dataset Requirements

Comparison against NIST Statistical Standards using NIST Data Sets and Validated Output

Univariate Summary Statistics ANOVA Linear Regression

EngineRoom Validation Test Output

Index

Dataset: BasicGraphsDataset: Measurement System AnalysisDataset: Statistical Process ControlDataset: Statistical Process ControlDataset: ParametricHypTestsDataset: NonParametricHypTestsDataset: RegressionDataset: DOE_FullDataset: DOE_FractionalDataset: ODE_GeneralDataset: Graphical SummaryDataset: Non Normal Process Capability - Continuous DataDataset: Non Normal Process Capability - Discrete DataDataset: Classification and Regression Trees

Software Development Life Cycle

THIS DOCUMENT CONTAINS PROPRIETARY AND CONFIDENTIAL INFORMATION OF MORESTEAM.COM LLC, AND SHALL NOT BE USED, DISCLOSED OR REPRODUCED, IN WHOLE OR IN PART, FOR ANY PURPOSE, WITHOUT THE PRIOR WRITTEN CONSENT OF MORESTEAM.COM LLC. ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN REMAINS AT ALL TIMES THE PROPERTY OF MORESTEAM.COM LLC.

Copyright © 2021 MoreSteam.com LLC. All rights reserved.

Contents

Section 1: Overview
Section 2: Backlog Grooming and Prioritization
2.1 Responsibility
2.2 Location
2.3 Maintenance2
Section 3: Project Initiation (Sprint Planning) Phase
3.1 Responsibility
3.2 Location
3
3.3 Technical Team Role/Function
3
Section 4: Development Iterations (Sprint) Phase
4.1 Design
4.2 Development
4.3 Testing
Section 5: Software Release Phase
5.1 Final Testing
5.2 Software Readiness
5.3 Internal Training
5.4 Release Communication
Section 6: Production and Maintenance Phase

Section 1: Overview

MoreSteam uses an Agile Software Development Life Cycle that focuses on iterative and highly responsive software development.

Figure 1: High-Level Agile Software Development Life Cycle

MoreSteam's Agile system uses the Scrum framework to ensure rapid delivery of high-quality software, and a business approach that aligns development with customer needs and company goals.

The Scrum framework is distinguished by the following:

- Break work into cycles (usually 2 weeks long) called sprints
- Plan sprints based on important requirements for that point in time
- Don't estimate specific time; compare amount / size of work
- Review post-sprint to see how it went, what could be improved
- Collect feedback on the deliverables
- Daily stand up (5-10 minutes) meetings to highlight blockers and keep things moving

Section 2: Backlog Grooming and Prioritization

2.1 Responsibility

The EngineRoom Software Development team reviews the EngineRoom feature/item backlog on an ongoing, regular schedule in the agile project management database (Jira), and refines the requirements by incorporating stakeholder feedback and additional information as needed from Sales and Marketing, Product Management, and Technical Support. During the grooming process the backlog of items is prioritized and prepared for upcoming sprint planning sessions.

2.2 Location

The product backlog is made available to the company for reference and additional feedback, on the product's Agile Project Management Database (Jira) site.

2.3 Maintenance

The backlog is updated with all relevant and appropriate changes at each grooming session. All updates to the plan are the responsibility of the Development Team and Product Management.

All changes are reflected in the team Project Management (Jira) site.

Section 3: Project Initiation (Sprint Planning) Phase

3.1 Responsibility

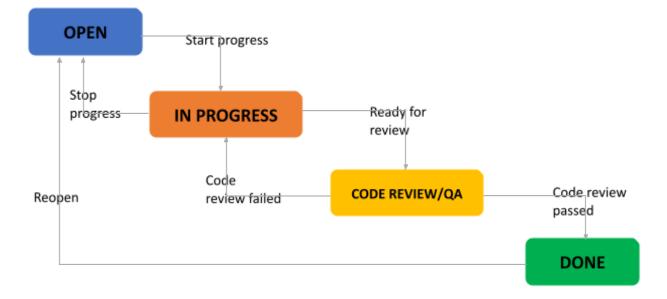
During the sprint planning phase, the priorities of work are defined for the next two weeks. The sprint is initiated by the development team.

3.2 Location

The sprint plan is made available to the company for reference and can be followed on the product's Agile Project Management Database (Jira) site.

3.3 Technical Team Role/Function

Team members choose their sprint cards (items) based on expertise and need. Paired programming is incorporated into the development process for developer growth opportunities and increased code quality.


The team is responsible for generating its working backlogs and updating the Sprint Plan as deliverables are submitted. The team led by the Product Manager and other stakeholders define backlog items, including acceptance criteria and level of effort needed. The team also prioritizes the backlog based on user value as communicated by the stakeholders.

Section 4: Development Iterations (Sprint) Phase

During the Sprint, the requirements and design for the deliverables are refined, developed, and tested. This cycle is iterative, and each of these aspects is continually refined as development occurs.

This work occurs over multiple iterations as illustrated below.

Figure 2: Development Iteration (Sprint) Cycle

4.1 Design

The design is handled by the development team, led by the Product Manager, by soliciting information and feedback from all stakeholders. Large-scale design work is worked on collaboratively with the company's stakeholders.

The design is documented on the JIRA cards. The design will continue to develop as coding and testing continues, which is documented on the relevant Code Review artifacts (i.e. Pull Requests)

4.2 Development

The development team provides 'Show and Tell' demos to relevant stakeholders at the end of the sprint and once testing is passed, the deliverable is ready for release. The team collects detailed comments from all observers and reviewers, consolidates the findings, and updates their work backlogs accordingly.

4.3 Testing

Quality Assurance Testing is implemented as needed and as development progresses. During the Code Review phase, the reviewers test the relevant code for any bugs or localized changes.

Section 5: Software Release Phase

During the software release phase at the end of the Sprint, final testing occurs and the release is assessed for readiness. In addition, communication documents and assets are prepared and if needed, internal training is provided to ensure that customer-facing groups are prepared to support the release.

5.1 Final Testing

The standard process is:

• QA alongside code review

a large change, conduct demonstrations (Show and Tell sessions) for stakeholders and customer facing groups

• Final regression testing before release to ensure that changes did not cause defects in any part of the system

For more information on test strategies, please see the EngineRoom Software Testing Protocol Document provided in this validation pack.

5.2 Software Readiness

The Product Manager and the Development Team are responsible for ensuring that all software requirements have been met and that the software is ready for release. The Product Manager works with Marketing and supported product teams to ensure supporting documents, communications and other resources are ready to be released at the time of the software release to production.

5.3 Internal Training

The Product Manager is responsible for coordinating all internal training necessary to support the software.

5.4 Release Communication

Project Management and Marketing are responsible for all release activities involving the branding, communication, training, selling, and delivery of a release.

Section 6: Production and Maintenance Phase

During the production and maintenance phase, the software is being supported in the field. As bugs and improvements are identified, they are documented and evaluated for inclusion in a future release of the software.

The Product Manager monitors the market needs, the usage and reported issues continuously. Any identified issues along with direct feedback from stakeholders is recorded and used to determine whether a released feature or tool needs to be reopened or fixed and added back to the backlog for prioritization.

Product releases can be either a Release (contains new functionality and bug fixes) or a Hotfix (a critical and urgent need).

Releases follow the same Product Development processes as a Major Release, with a few adjustments for the smaller scope and specific focus.

Hot Fixes are unplanned Maintenance Releases that are driven by a critical and urgent need. Hot Fixes contain Critical Bug Fixes that must be delivered to customers before the next planned Maintenance Release. The need for each Hotfix will be reviewed by the Development Team, the Product Manager and the Director of Product Development. If they determine that a Hotfix is warranted, it will be implemented and distributed to customers. The Hot Fix is managed like a Maintenance Release, with process and scope changes made as needed to deal with the specific bug fixes.

The development team follows an established cadence of feature releases and hotfix releases according to the sprint schedule (every two weeks).

EngineRoom Software Verification and Validation

Versions of third-party software used: R 3.5.0 and .NET Framework 4.6.2 with C# 7.0

Automated R Tests (Regression Tests)

- These test each of our R Scripts and make sure that the results are what we expect.
 - Utilize pre-existing JSON files in the repository containing the exact results of a given combination of inputs and options into a study.
 - For each noted combination of inputs and options, we run the script and check that its results match that of the JSON file.
- Tests are run before and after any changes to the R scripts are submitted to Code Review.
- Changes to formula calculations in a script trigger corresponding changes to the testing JSON files associated with the script, to account for the new calculations.
- Test data inputs are sourced from MoreSteam's courses (where data sets are validated using multiple commercial software packages and hand calculations) as well as text books and online data libraries (such as NIST, Kaggle and Github).
- If cases with specific inputs/options need to be accounted for that are not covered in the test battery, we add them to the tests.

Automated C# Tests (Unit Tests)

- For the tools coded in C#, unit tests are used to verify:
 - Studies run correctly
 - Studies contain expected results objects
 - Key calculations yield accurate values

Automated Test Info (Both C# and R)

• The builds for development and production proceed on the local development server. If any automated test fails, the build fails and does not push its artifacts to the development/production sites.

QA Testing (Manual Tests)

- While a code edit is undergoing Code Review, the reviewers test multiple situations relating to the code in order to stress test the edited code.
- Any unexpected behavior is noted and fixed immediately, while pre-existing bugs or aberrations are noted for resolution in a later sprint.
- Code Review is complete once all tests pass the evaluation criteria.

Smoke Testing (Manual Regression Tests)

- Before a major release, multiple team members implement a script to test specific parts of the application for incorrect behavior.
- Multiple browsers are tested to ensure cross-browser compatibility.

- If incorrect behavior is found that does not exist on the production server, it is patched and re-tested before release.
- If incorrect behavior is found that does exist on the production server, it is prioritized for resolution on the next sprint cycle.

EngineRoom Technical Specifications

System Requirements

Browser

- Chrome (Version 79+)
- Edge (Version 91+)
- Firefox (Version 78+)
- Safari (Version 13+)

Screen Resolution

- 1024 x 768 (minimum)
- 1920 x 1080 (recommended)

Operating Systems

- Microsoft Windows (7 and higher)
- Apple Mac OS X

Dataset Requirements

Supported Formats

• Microsoft Open XML format for spreadsheets (.XLSX and .CSV)

Note: If you do not have Microsoft Excel, your spreadsheet program may be capable of exporting to this format.

Maximum File Size

- Data files: 500kB (approximately 30,000 cells)
- Supporting files (images, PDF, etc.): 10 MB

Maximum Column Size

• 10,000 cells

Maximum Storage

• Data and supporting files: 500 MB

Comparison against NIST Statistical Standards using NIST Data Sets and Validated Output

The National Institute of Standards and Technology (NIST) provides a suite of Statistical Reference Data Sets (StRD) to assist in the evaluation of the numerical accuracy of statistical software. More information about these data sets is available at <u>www.itl.nist.gov/div898/strd/</u>.

The StRD data sets are the subject of this paper. The following sections report the results of tests that were run in EngineRoom. All tests used the same date: March 22, 2021. The tests were run for 64-bit systems on the latest versions of the following browsers (Note, IE is no longer supported in EngineRoom):

- Windows versions: Edge, Chrome
- macOS versions: Safari, Chrome

Index

- I. Univariate Summary Statistics
- II. <u>ANOVA</u>
- III. Linear Regression

I. Univariate Summary Statistics

URL: https://www.itl.nist.gov/div898/strd/univ/homepage.html
Selected 3 Data sets from the list: PiDigits, NumAcc2 and NumAcc4

Dataset Name	Level of Difficulty	Number of Observations	Source
PiDigits	Lower	5000	Observed
<u>Lottery</u>	Lower	218	Observed
Lew	Lower	200	Observed
<u>Mavro</u>	Lower	50	Observed
Michelso	Lower	100	Observed
NumAcc1	Lower	3	Generated
NumAcc2	Average	1001	Generated
NumAcc3	Average	1001	Generated
<u>NumAcc4</u>	Higher	1001	Generated

Univariate Summary Statistics Results Table:

Data Set	Size	Statistic	NIST Value	ER Value
PiDigits	5000	Mean	4.5348000000000	4.535
		Standard Deviation	2.86733906028871	2.867
		First-order Autocorrelati on	-0.00355099287237872	-0.004

NumAcc2	1001	Mean 1.2		1.2
		Standard Deviation	0.1	0.1
		First-order Autocorrelati on	-0.999	-1
NumAcc4	1001	Mean	1000000.2	10,000,000
		Standard Deviation	0.1	0.1
		First-order Autocorrelati on	-0.999	-0.992

Full Results:

1. PiDigits: NIST:

```
Certified ValuesSample Meanybar: 4.5348000000000Sample Standard Deviation (denom. = n-1)s: 2.86733906028871Sample Autocorrelation Coefficient (lag 1) r(1): -0.00355099287237972
```

5000

```
Number of Observations:
```

EngineRoom:

Statistics		
	Y	
Count	5,000	
Min	0	
Max	9	
Mean	4.535	
Median	5	
Standard Deviation	2.867	
Variance	8.222	
Anderson-Darling Test Statistic	85.68	
Anderson-Darling p-value	0	
Skewness	-0.008	Correlation
Kurtosis	-1.22	R -0.004

2. NumAcc2:

NIST:

Certified ValuesSample Meanybar: 1.2 (exact)Sample Standard Deviation (denom. = n-1)s: 0.1 (exact)Sample Autocorrelation Coefficient (lag 1) r(1):-0.999 (exact)Number of Observations:1001

EngineRoom:

Statistics		
	Υ	
Count	1,001	
Min	1.1	
Max	1.3	
Mean	1.2	
Median	1.2	
Standard Deviation	0.1	
Variance	0.01	
Anderson-Darling Test Statistic	179.2	
Anderson-Darling p-value	0	
Skewness	0	Correlation
Kurtosis	-2.003	R -1

3. NumAcc4: NIST:

		Certified Va	alues
Sample Mean	ybar:	10000000.2	(exact)
Sample Standard Deviation (denom. = n-1)	s:	0.1	(exact)
Sample Autocorrelation Coefficient (lag 1)	r(1):	-0.999	(exact)
Number of Observations:		1001	

EngineRoom:

Statistics		
	Υ	
Count	1,001	
Min	10,000,000	
Max	10,000,000	
Mean	10,000,000	
Median	10,000,000	
Standard Deviation	0.1	
Variance	0.01	
Anderson-Darling Test Statistic	179.2	
Anderson-Darling p-value	0	
Skewness	0	Correlatio
Kurtosis	-2.003	R -0.992

II. ANOVA

URL: https://www.itl.nist.gov/div898/strd/anova/anova.html

Selected 3 Datasets from the list: SiRstv, SmLs04 and SmLs08

Design: One-Way Balanced Model: $y_{ij} = \mu + \tau_i + \epsilon_{ij}$

Cell Treat	ments Source
5 5	Observed
21 9	Generated
9 9	Generated
9 9	Generated
24 2	Observed
21 9	Generated
9 9	Generated
9 9	Generated
21 9	Generated
91 9	Generated
91 9	Generated
	5 5 21 9 01 9 01 9 24 2 21 9 01 9 21 9 01 9 01 9 01 9 01 9 01 9 01 9 01 9 01 9 01 9

One-way ANOVA Results Table:

Data Set	Replicates	Statistic	NIST Value	ER Value
SiRstv	5	Between SS	5.11462616000000 E-2	0.0511
		Within SS	2.16636560000000 E-1	0.2166
		Between MS	1.27865654000000 E-2	0.0128
		Within MS	1.083180000000 E-2	0.0108
		F Statistic	1.18046237440255	1.18
SmLs04	21	Between SS	1.6800000000000	1.68
		Within SS	1.8000000000000	1.8
		Between MS	2.1000000000000 E-1	0.21

		Within MS	1.00000000000000 E-2	0.01
		F Statistic	2.10000000000000 E+1	21
SmLs08	201	Between SS	1.60800000000000 E+1	16.08
		Within SS	1.80000000000000 E+1	18.04
		Between MS	2.0100000000000	2.01
		Within MS	1.00000000000000 E-2	0.01
		F Statistic	2.0100000000000 E+2	200.6

1. SiRstv:

NIST:

Certified Values:

Source of Variation	df	Sums of Squares	Mean Squares	F Statistic
			1.2786565400000E-02 1.08318280000000E-02	1.18046237440255E+00

EngineRoom:

ANOVA Table

	DF	Sum Sq	MeanSq	FValue
Instrument	4	0.0511	0.0128	1.18
Residuals	20	0.2166	0.0108	NA

2. SmLs04:

NIST:

Certified Values:

Source of Variation	df	Sums of Squares	Mean Squares	F Statistic
			2.1000000000000E-01 1.0000000000000E-02	2.1000000000000E+01

EngineRoom:

AN	OV	A Ta	ble

	DF	Sum Sq	MeanSq	FValue	p-value
Treatment	8	1.68	0.21	21	0
Residuals	180	1.8	0.01	NA	NA

3. SmLs08:

NIST:

Certified Values:

Source of Variation	df	Sums of Squares	Mean Squares	F Statistic
Between Treatment Within Treatment			2.0100000000000E+00 1.000000000000E-02	2.0100000000000E+02

EngineRoom:

ANOVA Table

	DF	Sum Sq	MeanSq	FValue
Treatment	8	16.08	2.01	200.6
Residuals	1,800	18.04	0.01	NA

III. Linear Regression

URL: https://www.itl.nist.gov/div898/strd/lls/lls.shtml

Data set: Norris

Linear Regression Results Table:

Data Set	Sample size	Statistic	NIST Value	ER Value
Norris	36	Par1 Coefficient	-0.262323073774029	-0.262
		Par1 SE	0.232818234301152	0.2328
		Par2 Coefficient	1.00211681802045	1.002
		Par2 SE	0.429796848199937 E-03	0.0004
		Residual S	0.884796396144373	SQRT(MSE) = SQRT(0.7829) = 0.8848
		R-sq	0.999993745883712	1
		Regression SS	4255954.13232369	4,255,954
		Regression MS	4255954.13232369	4,255,954
		Residual SS	26.6173985294224	26.62
		Residual MS	0.782864662630069	0.7829
		F Statistic	5436385.54079785	5,436,386

Norris:

NIST:

Certified Regression Statistics

Parameter	Estimate	Standard Deviation of Estimate
80	-0.262323073774029	0.232818234301152
81	1.00211681802045	0.429796848199937E-03

Residual Standard Deviation 0.884796396144373

R-Squared 0.999993745883712

Certified Analysis of Variance Table

Source of Degrees of Sums of Variation Freedom Squares			Mean Squares	F Statistic
Regression	1	4255954.13232369	4255954.13232369	5436385.54079785
Residual	34	26.6173985294224	0.782864662630069	

EngineRoom:

y = -0.2623 + (1.002) * (x)

Regression Statistics

Correlation Coefficient, R	1
R Squared	1
Adjusted R Squared	1
Count	36

Coefficient Table

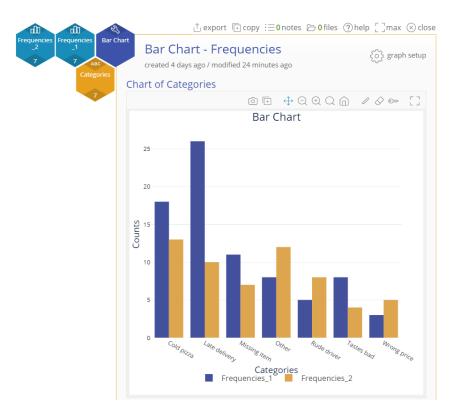
	Estimate	Std. Error	t value	p- value	95% Cl (lower)	95% Cl (upper)
(intercept)	-0.262	0.2328	-1.1	0.2677	-0.719	0.194
х	1.002	0.0004	2,300	0	1.001	1.003

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	1	4,255,954	4,255,954	5,436,386	0
Residuals	34	26.62	0.7829	NA	NA
Total	35	4,255,981	NA	NA	NA

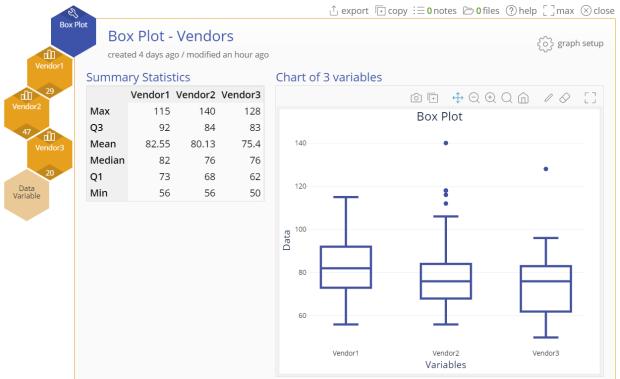
EngineRoom Validation Test Output

Index

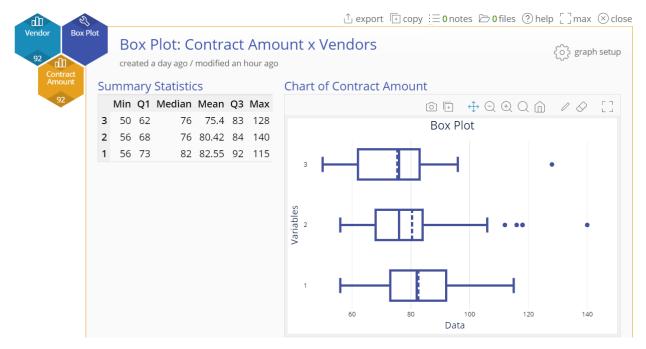

- I. Dataset: BasicGraphs
- II. Dataset: Measurement System Analysis
- III. Dataset: Statistical Process Control
- IV. <u>Dataset: ParametricHypTests</u>
- V. <u>Dataset: NonParametricHypTests</u>
- VI. Dataset: Regression
- VII. <u>Dataset: DOE_Full</u>
- VIII. Dataset: DOE_Fractional
- IX. <u>Dataset: DOE_General</u>
- X. Dataset: Graphical Summary
- XI. Dataset: Distribution Identification
- XII. Dataset: Non Normal Process Capability Continuous Data
- XIII. Dataset: Non Normal Process Capability Discrete Data
- XIV. Dataset: Classification and Regression Trees

I. Dataset: BasicGraphs

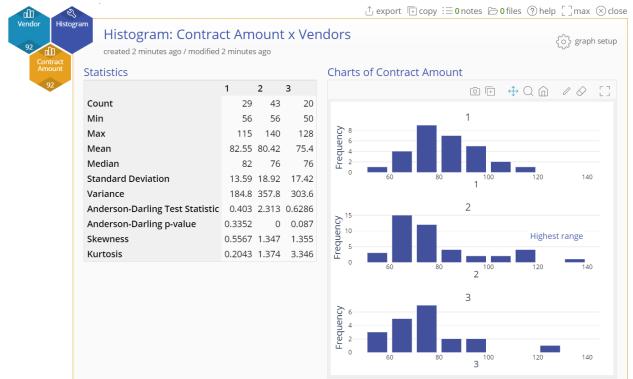
1. Bar Chart - Defects, Reference line = 25

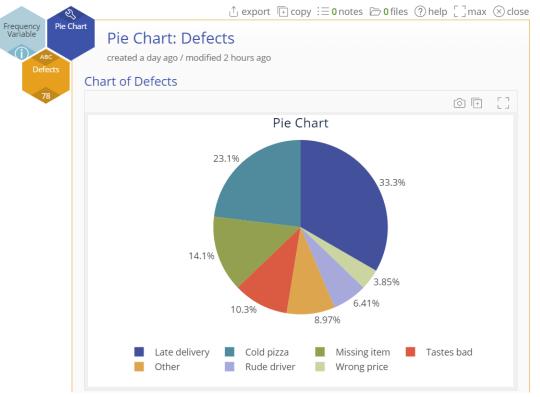


2. Bar Chart - Categories, Frequencies_1, Frequencies_2

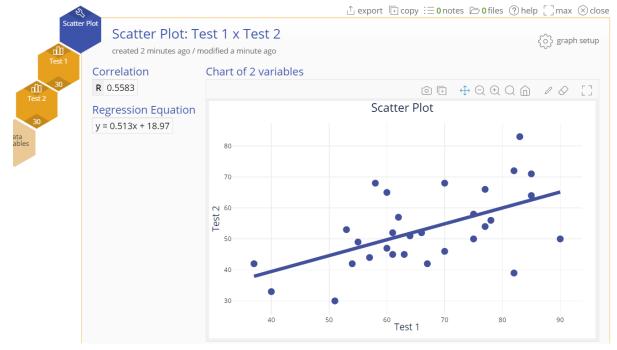


3. Box Plot - Vendors

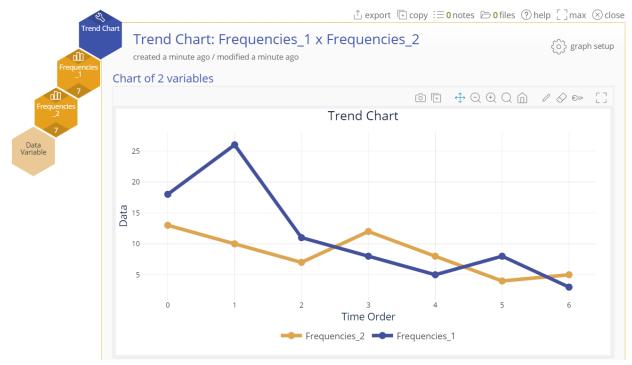

4. Box Plot: Contract Amount x Vendor

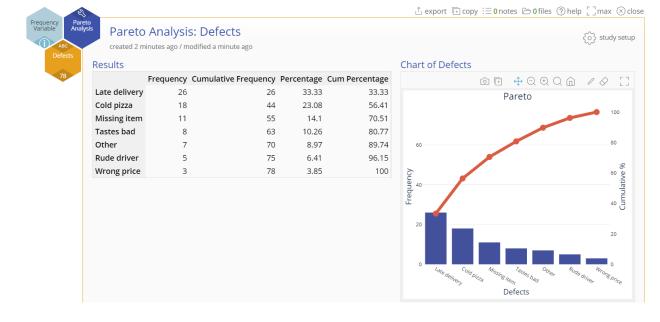

5. Histogram: Vendor1, Vendor2, Vendor3

created a day ago / modified 2 hou	113 050					
Statistics				Charts of 3 variab	les	
	Vendor1	Vendor2	Vendor3		© (∓) ↔ Q ∩	00 11
Count	29	47	20			
Min	56	56	50	~	Vendor1	
Max	115	140	128	8 °C		
Mean	82.55	80.13	75.4	8 6 4 2 2 2		_
Median	82	76	76	ш ₀	80 100	120
Standard Deviation	13.59	18.18	17.42		Vendor1	
Variance	184.8	330.7	303.6		Vendor2	
Anderson-Darling Test Statistic	0.403	2.498	0.6286	C) 15 10 10 5		
Anderson-Darling p-value	0.3352	0	0.087			
Skewness	0.5567	1.422	1.355	بة ₀	80 100 120	140
Kurtosis	0.2043	1.754	3.346		Vendor2	
					Vendor3	
				6 4 2 2 2		


6. Histogram: Contract Amount x Vendor

7. Pie Chart: Defects


8. Scatter Plot: Test 1 x Test 2


9. Scatter Plot: Test 1 x Test 2 x Test 3

10. Trend Chart: Frequencies_1 x Frequencies_2

11. Pareto Analysis: Defects

Back

II. Dataset: Measurement System Analysis

1. Gauge R&R: Measurement

Gauge R&R: Measurement

created a day ago / modified 2 hours ago

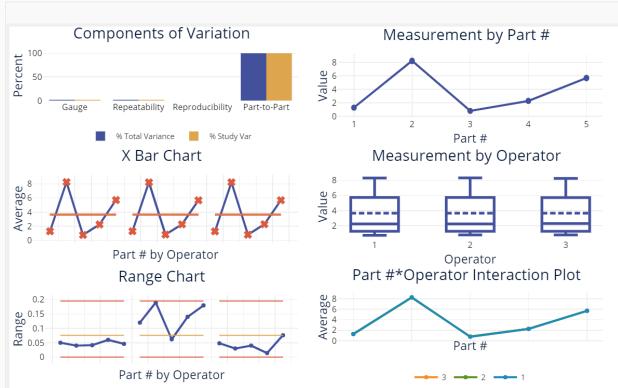
ANOVA Table - Crossed, with Interaction

	Df	Sum Sq	Mean Sq	F value	p-value
Part #	4	368.3	92.08	61,086	0
Operator	2	0	0	0.0023	0.9977
Operator*Part #	8	0.0121	0.0015	0.6615	0.7205
Repeatability	30	0.0684	0.0023		
Total	44	368.4			

ANOVA Table - Crossed, without Interaction

	Df	Sum Sq	Mean Sq	F value	p-value
Part #	4	368.3	92.08	43,508	0
Operator	2	0	0	0.0016	0.9984
Repeatability	38	0.0804	0.0021		
Total	44	368.4			

Gauge R&R - Variance Components (ANOVA) Method


	VarComp	% Total Variance
Total Gauge R&R	0.0021	0.02
Repeatability	0.0021	0.02
Reproducibility	0	0
-Operator	0	0
Part-to-Part	10.23	99.98
Total Variance	10.23	100

Gauge R&R - AIAG Method

	Std Dev	StudyVar	% Study Var
Total Gauge R&R	0.046	0.276	1.44
Repeatability	0.046	0.276	1.44
Reproducibility	0	0	0
-Operator	0	0	0
Part-to-Part	3.199	19.19	99.99
Total Variance	3.199	19.19	100

Number of Distinct Categories 98

Charts of Measurement

2. Attribute Agreement Analysis: Binary

ont	
EIIL	
sis	

Attribute Agreement Analysis: Binary

created a day ago / modified 4 hours ago

Within Appraiser Agreement

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% Cl (upper)
Janet	20	20	100	86.09	100
Chris	18	20	90	68.3	98.77
Sam	19	20	95	75.13	99.87

Within Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
Janet	F	1	0.2236	4.472	0
	Р	1	0.2236	4.472	0
Chris	F	0.798	0.2236	3.569	0.0002
	Р	0.798	0.2236	3.569	0.0002
Sam	F	0.886	0.2236	3.962	0
	Р	0.886	0.2236	3.962	0

Each Appraiser Vs Standard

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% CI (upper)
Janet	16	20	80	56.34	94.27
Chris	18	20	90	68.3	98.77
Sam	15	20	75	50.9	91.34

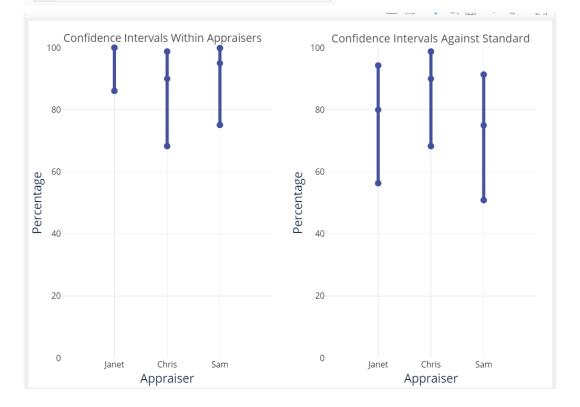
Each Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
Janet	F	0.5604	0.1581	3.545	0.0002
	Р	0.5604	0.1581	3.545	0.0002
Chris	F	0.8987	0.1581	5.684	0
	Р	0.8987	0.1581	5.684	0
Sam	F	0.5422	0.1581	3.429	0.0003
	Р	0.5422	0.1581	3.429	0.0003

Between Appraiser Agreement

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% Cl (upper)
All	10	20	50	27.2	72.8

Between Appraiser Fleiss Kappa Statistic


	Response	Карра	SE Kappa	Z	p-value	
All	F	0.4965	0.0577	8.6	0	
	Р	0.4965	0.0577	8.6	0	

All Appraisers Vs Standard

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% Cl (upper)
All	10	20	50	27.2	72.8

	Response	Карра	SE Kappa	Z	p-value
All	F	0.6671	0.0913	7.308	0
	Р	0.6671	0.0913	7.308	0

3. Attribute Agreement Analysis: Ordinal data

ient sis

Attribute Agreement Analysis: Ordinal data

created a day ago / modified 4 hours ago

Within Appraiser Agreement

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% Cl (upper)
1	4	10	40	12.16	73.76
2	6	10	60	26.24	87.84

Within Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
1	1	0.7115	0.1826	3.897	0
	2	0.375	0.1826	2.054	0.02
	3	0.4886	0.1826	2.676	0.0037
	4	0.28	0.1826	1.534	0.0626
	5	0.1346	0.1826	0.7373	0.2305
	6	1	0.1826	5.477	0
	Overall	0.4687	0.0849	5.521	0
2	1	1	0.1826	5.477	0
	2	1	0.1826	5.477	0
	3	0.3182	0.1826	1.743	0.0407
	4	0.8137	0.1826	4.457	0
	5	1	0.1826	5.477	0
	6	-0.111	0.1826	-0.609	0.7286
	Overall	0.6685	0.0874	7.645	0

Within Kendall Coefficient of Concordance

	Kendall	Chi-Sq	DF	p-value
1	0.9224	24.91	9	0.0031
2	0.7605	20.53	9	0.0149

Each Appraiser Vs Standard

	# Agreements	# Inspected	% Agreement	95% CI (lower)	95% Cl (upper)
1	4	10	40	12.16	73.76
2	6	10	60	26.24	87.84

Each Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
1	1	0.8693	0.1826	4.761	0
	2	0.5721	0.1826	3.133	0.0009
	3	0.7524	0.1826	4.121	0
	4	0.4526	0.1826	2.479	0.0066
	5	0.1285	0.1826	0.704	0.2407
	6	1	0.1826	5.477	0
	Overall	0.6268	0.0868	7.219	0
2	1	1	0.1826	5.477	0
	2	1	0.1826	5.477	0
	3	0.5937	0.1826	3.252	0.0006
	4	0.9111	0.1826	4.99	0
	5	1	0.1826	5.477	0
	6	0.148	0.1826	0.8108	0.2087
	Overall	0.7908	0.0884	8.951	0

Between Appraiser Agreement

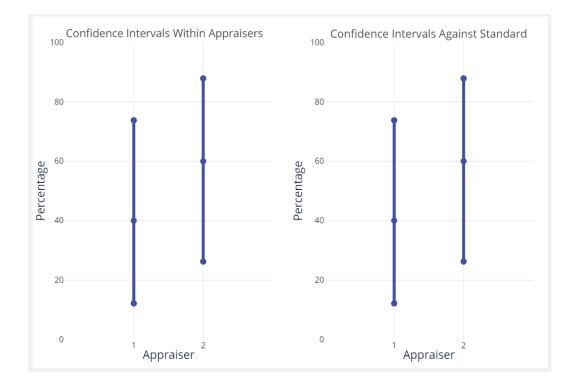
	#	#	%	95% CI	95% CI	
	Agreements	Inspected	Agreement	(lower)	(upper)	
All	2	10	20		2.521	55.61

Between Appraiser Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
All	1	0.8383	0.0816	10.27	0
	2	0.625	0.0816	7.655	0
	3	0.4205	0.0816	5.149	0
	4	0.4583	0.0816	5.613	0
	5	0.3208	0.0816	3.928	0
	6	0.3333	0.0816	4.082	0
	Overall	0.499	0.0384	13	0

Between Kendall Coefficient of Concordance

Kendall Chi-Sq DF p-value


All 0.7655 41.34 9 0

All Appraisers Vs Standard

	#	#	%	95% CI	95% CI	
	Agreements	Inspected	Agreement	(lower)	(upper)	
All	2	10	2	0	2.521	55.61

All Appraisers Fleiss Kappa Statistic

	Response	Карра	SE Kappa	Z	p-value
All	1	0.9346	0.1291	7.24	0
	2	0.786	0.1291	6.089	0
	3	0.673	0.1291	5.213	0
	4	0.6819	0.1291	5.282	0
	5	0.5643	0.1291	4.371	0
	6	0.574	0.1291	4.446	0
	Overall	0.7088	0.0619	11.44	0

4. Process Capability Analysis: Width (Isl=0.8, target=0.85, usl=0.9)

Specifications

Lower Specification Limit:	0.8
Target:	0.85
Upper Specification Limit:	0.9
Specification Range (Tolerance)	0.1

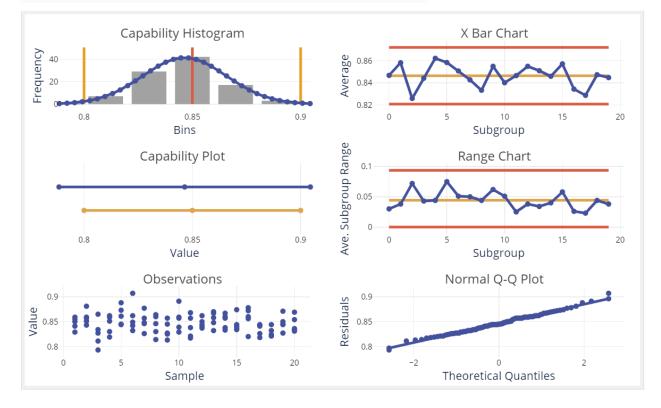
Normality Test

Anderson-Darling Test Statistic	0.2326
Anderson-Darling p-value	0.794

Process Capability Statistics (Within)

Ср	0.8751
Cpk	0.8131
% Yield	99.02
Sigma	2.333

Process Capability Statistics (Overall)


Рр	0.8617
Ppk	0.8007
Cpm	0.8475
% Yield	98.9
Sigma	2.291

Process Performance (% Defective)

	Observed	Expected (Within)	Expected (Overall)
% Below LSL	1	0.7356	0.8151
% Above USL	1	0.2468	0.2819
Total	2	0.9824	1.097

Process Characteristics

Sample Size	100
Subgroup Size	5
Number of Subgroups	20
Sample Mean	0.8465
Standard Deviation (Within)	0.019
Standard Deviation (Between)	0.0193

Back

III. Dataset: Statistical Process Control

1. X and Moving Range Chart - Yield

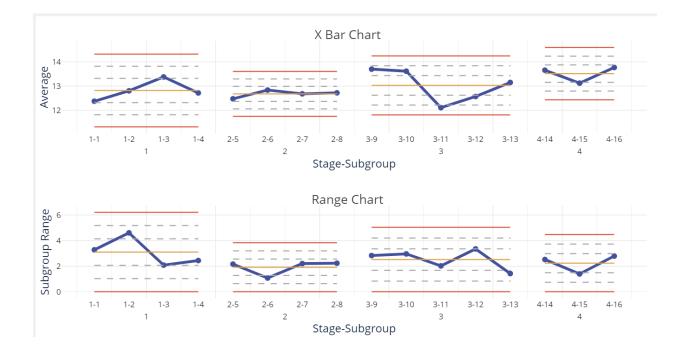
X Chart Statistics

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	17.08	14.95	16.09	15.91
Average	12.82	12.68	13.03	13.51
LCL	8.559	10.41	9.965	11.12

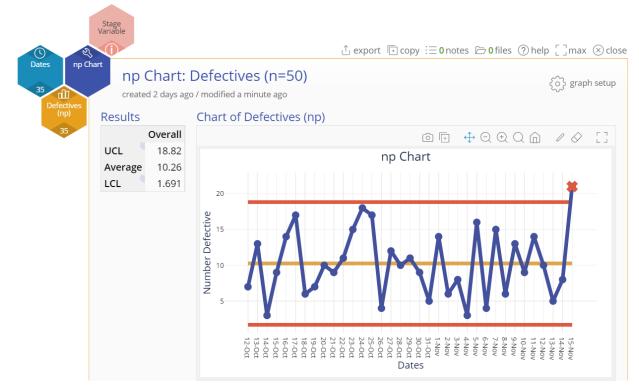
Moving Range Chart Statistics

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	5.232	2.791	3.763	2.946
Average	1.601	0.8543	1.152	0.9018
LCL	0	0	0	0

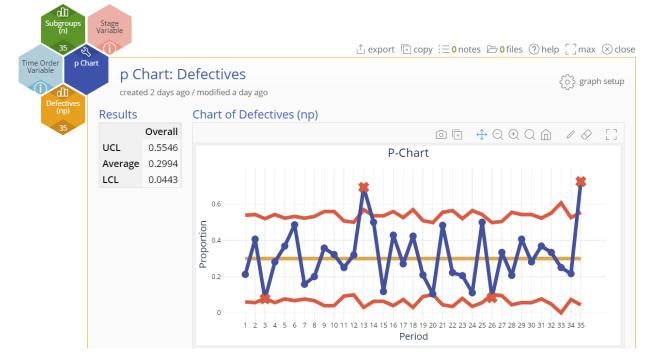
2. X bar and R/S Chart - Yield

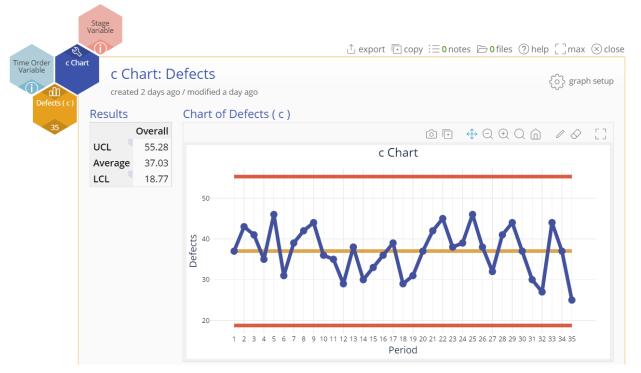


X Chart Statistics


	0	Stage 2	Stage 3	Stage 4
UCL	14.32	13.6	14.24	14.59
Average	12.82	12.68	13.03	13.51
LCL	11.32	11.75	11.81	12.43

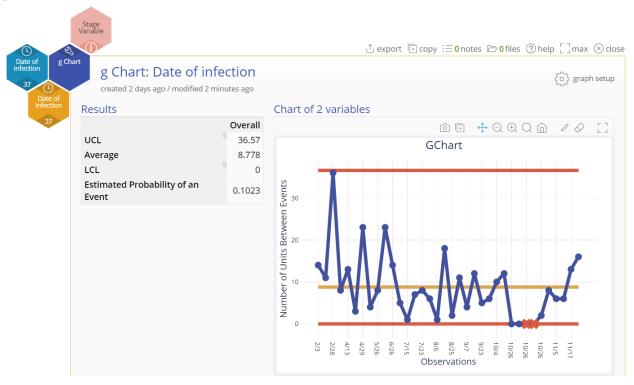
R Chart Statistics

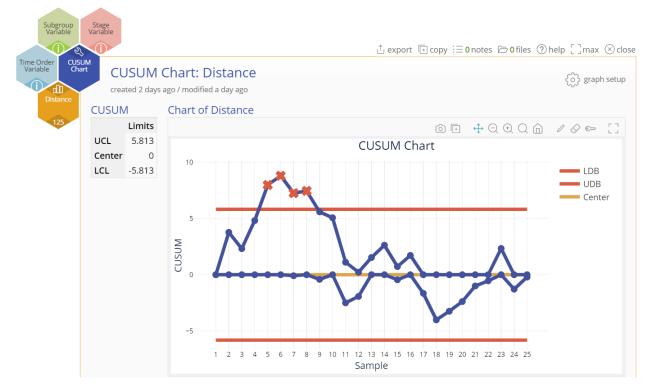

	Stage 1	Stage 2	Stage 3	Stage 4
UCL	6.217	3.838	5.042	4.476
Average	3.103	1.915	2.516	2.233
LCL	0	0	0	0

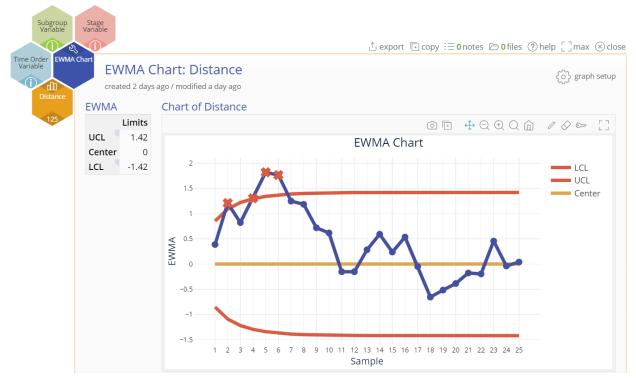

3. np Chart: Defectives (n=50)


4. p Chart: Defectives

5. c Chart: Defects


6. u Chart: Defects


7. g Chart: Doses b/w medication errors

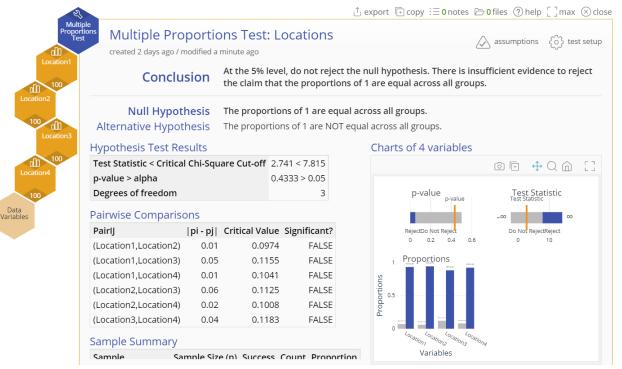

8. g Chart: Date of infection

9. CUSUM Chart: Distance

10. EWMA Chart: Distance

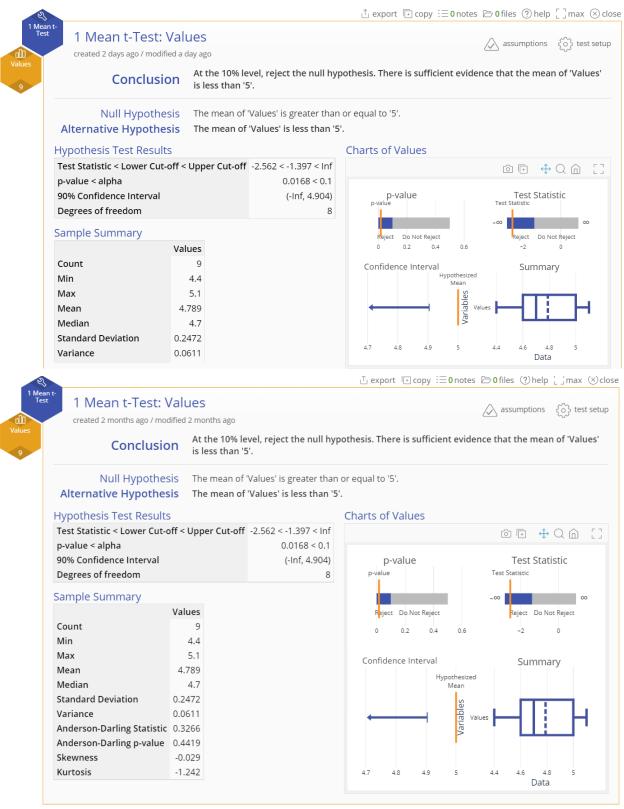
Back

IV. Dataset: ParametricHypTests


1. 1 Proportion Test: Pass

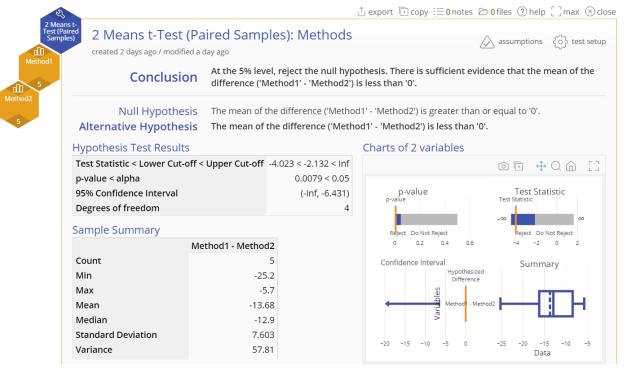
¹ 1 Proportion Test:	Pass			assumptions $\{ \widehat{0} \}$ test set
created 2 days ago / modified a m	inute ago			
Conclusion		el, reject the null hyp ass' is greater than '0		dence that the proportion of the
Null Hypothesis	The proportio	n of the event '1' in 'P	ass' is less than or equal to '0.5	5'.
Alternative Hypothesis	The proportio	on of the event '1' in '	Pass' is greater than '0.5'.	
Hypothesis Test Results			Charts of Pass	
Lower Cut-off < Upper Cut-off <	Test Statistic	-Inf < 1.645 < 3.801		
p-value < alpha		1e-04 < 0.05		
95% Confidence Interval		(0.6293, Inf)	p-value p-value	Test Statistic Test Statistic
Sample Summary				-00 00
Sample Sample Size (n) Succes	•		Reject Do Not Reject	Do Not Reject Reject
Pass 80	1 57	0.7125	0 0.2 0.4 0	.6 0 5
			Confidence Interval	1 Proportions
			Proportion	Successes
				0.5 Failures
				G Failures
				0
			0.5 0.6 0.7 0.8 0.9	Pass Variables

2. 2 Proportions Test: Line1 x Line2


created 2 days age			x Lir	ne2			assumption	ons {o} test s
Conc	lusion				<i>,</i>	l hypothesis. There is insuf nt '1' in 'Line1' is equal to t		e to reject the
Null Hyp Alternative Hyp						ne1' is equal to that in 'Line e1' is NOT equal to that in 'L		
Hypothesis Test	Results					Charts of 2 variables		
Lower Cut-off < Ter off	st Statistic	< Upper Cut	-	-1.96	< 0.8701 < 1.96		0 [+	
p-value > alpha 95% Confidence In	terval				842 > 0.05 11, 0.2998)	p-value _{p-value}		Statistic Test Statistic
Sample Summar	·	c'				Reject Do Not Reject		tDo Not Reject
Sample	Sample (n)	Size Su	ccess	Count P	roportion		0.6 -5	0 5
Lin		40	1	14	0.35	Confidence Interval Hypothesized Difference	1 Pro	portions Failures
Lin Pooled Proporti		35 75	1 1	9 23	0.2571 0.3067		Support 0.5 Successes	
Estimate Differen					0.0929		G Successes	Successes
						-0.1 0 0.1 0.2 0.3		Line2 ariables

3. Multiple Proportions Test: Locations

Sample Summa	ry			
Sample	Sample Size (n)	Success	Count	Proportion
Location1	100	1	7	0.07
Location2	100	1	6	0.06
Location3	100	1	12	0.12
Location4	100	1	8	0.08
Pooled Proportion	400	1	33	0.0825


4. 1 Mean t-Test: Values

5. 2 Means t-Test: BTU

थे 2 Means t-			ſ	export 🕞 copy 🗄 0 notes	🗁 0 files
² Means t-T	est: BTU				A assumptions {₀} test set
created 2 days ago /	modified a day ago				
				hypothesis. There is insuffic reater than or equal to the r	
Null Hypot	thesis The mea	n of 'BTU.In_1'	is greater than	n or equal to the mean of 'B	TU.In_2'.
Alternative Hypo	thesis The mea	n of 'BTU.In_1'	is less than the	mean of 'BTU.In_2'.	
Hypothesis Test Re	esults			Charts of 2 variables	
Lower Cut-off < Test off	Statistic < Upper C	ut1.66	2 < -0.3848 < Inf		
p-value > alpha		().3506 > 0.05	p-value	Test Statistic
95% Confidence Inte	rval		(-Inf, 0.781)	p-value	Test Statistic
Degrees of freedom			88		-00 00
Sample Summary				Réject Do Not Reject 0 0.2 0.4 0.6	Reject Do Not Reject
	BTU.In_1 B	_		Confidence Interval	Summary
Count	40	50		Hypothesized Difference B	TU.ln_2
Min Max	4 18.26	2.97 16.06		ples	· ш ·
Mean	9,908	10.00		Vari db les	
Median	9.59	10.29			
Standard Deviation	3.02	2.767		-0.5 0 0.5	5 10 15 Data
	~ * ~				Data
dard Deviation	3.02	2.767			
nce	9.12	7.656			
rson-Darling Statist	ic 0.4745	0.1896			
rson-Darling p-valu	e 0.2283	0.8951			
ness	0.7075	-0.099			
osis	0.784	-0.272			
2010	0.704	0.272			

6. 2 Means t-Test (Paired Samples): Methods

Sample Summary

	Method1 - Method2
Count	5
Min	-25.2
Max	-5.7
Mean	-13.68
Median	-12.9
Standard Deviation	7.603
Variance	57.81
Anderson-Darling Statistic	NA
Anderson-Darling p-value	NA
Skewness	-0.843
Kurtosis	0.4109

7. One-way ANOVA: Routes

One- ANC	way								🖞 export 🕞 copy 🗄 🛛 notes 🗁 🛛 files ⑦ help [] max 🛞
ANC	One One	-wa	y ANO	VA: R	outes	5			💭 assumptions 🖧 test set
dl] Route1	created	2 days	s ago / moc	dified 5 mi	nutes ago)			
21	Conclusion At the 20% level, do not reject means of the levels of 'Routes'								null hypothesis. There is insufficient evidence to reject the claim that the all equal.
21 ta bles	Null Hypothesis The means of the levels of 'Route Alternative Hypothesis The means of the levels of 'Route								•
	Alternat	live F	lypothe	esis T	he mear	ns of the leve	els of 'Rou	ites' ar	re NOT all equal.
	Hypothes	sis Te	est Resu	ilts					Charts of 3 variables
		Test Statistic < F-Critical 1.009 < 1.653							
	p-value > a	alpha		0.3706	5 > 0.2				
	ANOVA T	able							p-value Test Statistic p-value Test Statistic
		DF S	Sum Sq T	MeanSq	FValue	p-value F-0	Critical		_00 00
	Routes	2	188.2	94.11	1.009	0.3706	1.653		Reject Do Not Reject Do No. Reject Reject
	Residuals	60	5,594	93.24	NA	NA	NA		0 0.2 0.4 0.6 0 1 2
	Total	62	5,783	NA	NA	NA	NA		Tukey Confidence Intervals Summary
	All Pairwi	se Co	omparis	sons					Route3-Route2 60
			Lower 8 Cl	30% N	^{/lean} C	lpper 80% I	Significa	ant?	
	Route2-				1 = 7 1	3.605		ALSE	Route2-Route1
	Route1			-6.747 -	1.5/1	5.005	, 17-	ALJL	-5 0 5 10 Route1 Route2 Route3

All Pairwise Comparisons

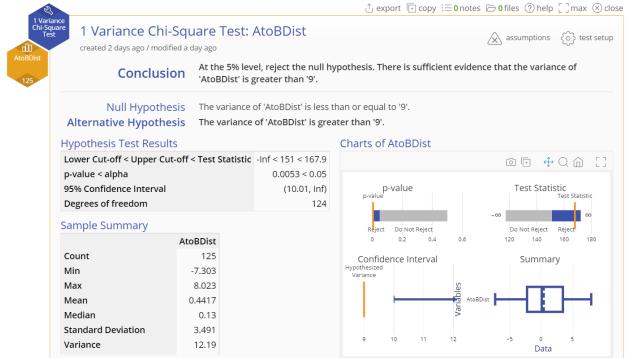
	Lower 80% Cl	Mean	Upper 80% Cl	Significant?
Route2– Route1	-6.747	-1.571	3.605	FALSE
Route3– Route1	-2.557	2.619	7.795	FALSE
Route3– Route2	-0.986	4.19	9.366	FALSE

Sample Summary

	Route1	Route2	Route3
Count	21	21	21
Min	20	10	20
Max	48	44	65
Mean	33.29	31.71	35.9
Median	33	33	34
Standard Deviation	8.861	8.451	11.39
Variance	78.51	71.41	129.8
Anderson-Darling Test Statistic	0.3627	0.2358	0.5409
Anderson-Darling p-value	0.4088	0.7595	0.1454
Skewness	0.0985	-0.588	1.048
Kurtosis	-1.272	0.687	1.181

8. Blocked One-way ANOVA: Routes x Make

One-w ANOV	Бюс		One- s ago / mod	-		: Route	s x Ma	ake	े assumptions र्ि test s
21		Со	nclusi	on		-			ull hypothesis. There is insufficient evidence to reject th f 'Routes' are all equal across the levels of 'Make'.
21 Route3	Alternat	ive H		esis Tł				utes' are	are all equal across the levels of 'Make'. re NOT all equal across the levels of 'Make'.
21	Hypothesis Test Results							Charts of 4 variables	
ta	Test Statistic < F-Critical 1.087 < 2.396								
Data riables	p-value > a	•		0.3439	> 0.1				p-value Test Statistic ^{p-value} Test Statistic
		DF Sum Sq MeanSq FValue p-value F-Critical							00
	Routes	2	188.2	94.11	1.087	0.3439	2.396		Rejection Not Rejection Do Not Rejection
	Make	2	574.6	287.3	3.32	0.0432	NA		0 0.2 0.4 0.6 0 2 4
	Residuals	58	5,020	86.55	NA	NA	NA		Tukey Confidence Interval: Summary
	Total	62	5,783	NA	NA	NA	NA		Route3-Route2 60
	All Pairwise Comparisons								
			Lower 9	0%	lean Ul CI	oper 90%	Signifi	cant?	
	Route2– Route1			-5.467 1	.571	8.6	1 F	ALSE	Route2-Route1 -10 -5 0 5 10 Route1 Route2 Route3

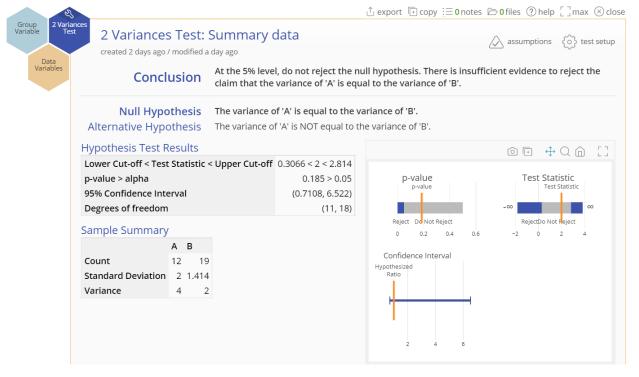

All Pairwise Comparisons

	Lower 90% Cl	Mean	Upper 90% Cl	Significant?
Route2– Route1	-5.467	1.571	8.61	FALSE
Route3– Route1	-9.66	-2.619	4.419	FALSE
Route3– Route2	-11.23	-4.19	2.848	FALSE

Sample Summary

	Route1	Route2	Route3
Count	21	21	21
Min	20	10	20
Max	48	44	65
Mean	33.29	31.71	35.9
Median	33	33	34
Standard Deviation	8.861	8.451	11.39
Variance	78.51	71.41	129.8
Anderson-Darling Test Statistic	0.3627	0.2358	0.5409
Anderson-Darling p-value	0.4088	0.7595	0.1454
Skewness	0.0985	-0.588	1.048
Kurtosis	-1.272	0.687	1.181

9. 1 Variance Chi-Square Test: AtoBDist


Sample Summary

	AtoBDist
Count	125
Min	-7.303
Max	8.023
Mean	0.4417
Median	0.13
Standard Deviation	3.491
Variance	12.19
Anderson-Darling Statistic	0.8911
Anderson-Darling p-value	0.0222
Skewness	0.1245
Kurtosis	-0.823

10. 2 Variances Test: BTU

21/2					Û	export	∋ 0 files				
2 Varia Tes		: BTU					🔿 assumptions 👸 test seti				
di	created 2 days ago / modified	d a day ago					assumptions $\{ \substack{0 \\ 0 \ \end{pmatrix}}$ test set				
BTU.In_1	Conclusion					ypothesis. There is insuffic equal to the variance of 'Bī					
n_2	Null Hypothesis	The var	The variance of 'BTU.In_1' is equal to the variance of 'BTU.In_2'.								
	Alternative Hypothesis	The vari	ance of '	BTU.In_1' is N	DT equal t	to the variance of 'BTU.In_2'					
	Hypothesis Test Results					Charts of 2 variables					
	Lower Cut-off < Test Statisti off	c < Upper (Cut-	0.5416 < 1.191 < 1.808							
	p-value > alpha			0.557	3 > 0.05	p-value	Test Statistic				
	95% Confidence Interval			(0.6587	, 2.199)	p-value	Test Statistic				
	Degrees of freedom				(39, 49)		_00 00				
	Sample Summary					Reject Do Not Reject 0 0.5 1	Reje b to No <mark>r</mark> Reject 0 1 2 3				
		BTU.In_1 E	TU.In_2			Confidence Interval	Summary				
	Count	40	50			Hypothesized					
	Min	4	2.97				TU.In_2				
	Max	18.26	16.06			Variables					
	Mean	9.908	10.14								
	Median Standard Deviation	9.59 3.02	10.29 2.767			1 1.5 2	5 10 15				
		5.02	2.707				Data				
ndard	Deviation	3.	02	2.767							
iance		9.	12	7.656							
derso	n-Darling Statistic	0.47	45	0.1896							
	n-Darling p-value	0.22		0.8951							
ewnes	• ·	0.70		-0.099							
rtosis		0.7		-0.272							

11. 2 Variances Test: Summary data

12. Multiple Variances Test: Routes

Route1 21 22 Route3	Vultiple Variar reated 2 days ago / modi Conclusic Null Hypothes ernative Hypothes othesis Test Resul er Cut-off < Test Stat	ified a minute DN At th clain sis The sis The	e ago ne 20% lev n that the variances	vel, do no varianco are equ			ြ assumptions		
Coute1 21 e2 c1 Route3 Alte	Conclusion Null Hypothes ernative Hypothes othesis Test Result	ified a minute DN At th clain sis The sis The	e ago ne 20% lev n that the variances	vel, do no varianco are equ	es are equal acros	ss all groups.			
Proute1	Conclusio Null Hypothes ernative Hypothes othesis Test Resul	on At th clain sis The sis The	ne 20% lev n that the variances	are equ	es are equal acros	ss all groups.	ent evidence to reject the		
21 22 Clin Alte	Null Hypothes ernative Hypothes othesis Test Resul	sis The sis The	n that the variances	are equ	es are equal acros	ss all groups.	ent evidence to reject the		
dll Alte	ernative Hypothe othesis Test Resul	sis The			al across all grou				
Route3	othesis Test Resul		variances						
		ltc		are NOT	equal across all g	roups.			
	er Cut-off < Test Stat	its			Charts of 3 variables				
	er cut-on < rest stat	istic < Upp	er Cut-	0	.1055 < 0.5676 <				
es					2.393				
	lue > alpha ees of freedom				0.5699 > 0.2	p-value _{p-value}	Test Statistic Test Statistic		
Degi	ees of freedom				(2, 60)		-00		
Sam	ple Summary					RejectDo Not Reject	Røjedlot Reject		
			Route2			0 0.5 1	0 2 4 6		
Cour	nt	21	21	21		Summary			
Min Max		20 48	10 44	20 65		Route3	1		
Mea		33.29	31.71	35.9					
Med		33	33	34					
Stan	dard Deviation	8.861	8.451	11.39		Route1			
Varia	ance	78.51	71.41	129.8		20 40 60 Data			
						Data			
derson-Darli	ing Statistic	0.3627	0.235	8 0.5	409				
derson-Darli	ing p-value	0.4088	0.759	5 0.1	454				
ewness	0.	0.0985	-0.58		.048				
rtosis		-1.272	0.68	71.	181				

Back

V. Dataset: NonParametricHypTests

1. 1 Sample Sign Test: Fillwt

খ্য				⊥ export 🕞 copy 🗄	0 notes 🗁 0 files ⑦ help [] max ⊗ close		
1 Sam Sign T	1 Sample Sign T created 2 days ago / modifie				assumptions $\{ \widehat{o} \}$ test setup		
Fillwt 38	Conclusio	n At the 15% long is less than '		null hypothesis. There is sufficient evidence that the median of 'Fillwt'			
	Null Hypothes Alternative Hypothes		of 'Fillwt' is great of 'Fillwt' is less	er than or equal to '1'. than '1'.			
	Hypothesis Test Results			Charts of Fillwt			
	Test Statistic < Lower Cut-o off	ff < Upper Cut-	15 < 16 < Inf		◎ 🕞 🕂 Q 🍙 []		
	p-value < alpha		0.1279 < 0.15	p-value p-value	Test Statistic Test Statistic		
	87.21% Confidence Interval Sample Size for Test (exclue Sample Median		(-Inf, 0.9448) 38 0.93	Reject 0 0.2 0.4	- co Reject Do Not Reject 15 16 17 18		
	Sample Summary			Confidence Interval Hypothe Media			
	Count	Fillwt 38 0.5539 1.57 1.002 0.93		0.85 0.9 0.95 1	0.5 1 1.5 Data		
Media	n	0.93					
Standa	ard Deviation	0.2651					
Varian	ce	0.0703					
Anders	son-Darling Statisti	c 1.061					
Anders	son-Darling p-value	0.0077					
Skewn	ess	0.5664					
Kurtos	is	-0.329					

2. 1 Sample Wilcoxon Signed Ranks Test: Fillwt

হ	le wilcoxon Signed			🗅 export 🕞 copy 📃 0	notes 🗁 0 files ⑦ help [] max 🛞 cl			
1 Sarr Wilcox Tes	ton t 1 Sample Wilco: created 2 days ago / modifie	-	Ranks Test: F	illwt	🛆 assumptions {ဂ်} test setu			
Fillwt 38	Conclusion			ne null hypothesis. There is insu is greater than or equal to '1'.	insufficient evidence to reject the '1'.			
	Null Hypothesi Alternative Hypothesi		of 'Fillwt' is greater f 'Fillwt' is less than	than or equal to '1'. '1'.				
	Hypothesis Test Results	;		Charts of Fillwt				
	Lower Cut-off < Test Statist p-value > alpha 85% Confidence Interval Significance Level Sample Size for Test (exclu Estimated Median		f 296 < 362 < Inf 0.4538 > 0.15 (-Inf, 1.03) 0.15 38 0.9959	p-value p-value Reject Do Not Reject 0 0.2 0.4 0.	G			
	Sample Summary			Confidence Interval	Summary			
	Count Min Max Mean Median	Fillwt 38 0.5539 1.57 1.002 0.93		Hypothesized Median	Signification of the second se			
tanda	rd Deviation	0.2651						
arian	ce	0.0703						
nders	on-Darling Statistic	1.061						
	on-Darling p-value	0.0077						
kewn		0.5664						
urtos	ic	-0.329						

3. Paired Samples Sign Test: Drug A, B

থ				🖞 export 🕞 copy 🗄 0 notes 🗁 0 files ⑦ help [] max 🛞 close
Pair Sam Sign	red Ples Test Created 2 days ago / modified	0	rug A, B	assumptions () test setup
Drug A	Conclusion			ct the null hypothesis. There is insufficient evidence to reject the e differences ('Drug A' - 'Drug B') is equal to '0'.
Drug B	Null Hypothesis Alternative Hypothesis			es ('Drug A' - 'Drug B') is equal to '0'. s ('Drug A' - 'Drug B') is NOT equal to '0'.
	Hypothesis Test Results			Charts of 2 variables
	Test Statistic < Lower Cut-off	< Upper Cut-off		
	p-value > alpha 97.85% Confidence Interval Sample Size for Test (excludin Median of Differences	ng ties)	0.1797 > 0.1 (-3, 1) 9 -1	p-value p-value -0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Sample Summary			Reject Reject Reject 0 0.2 0.4 0.6 0 5 10
	D Count Min Max Mean Median Standard Deviation	rug A - Drug B 10 -3 6 1.1 1 2.378		Confidence Interval Hypothesized Difference B B B B B B B Confidence Interval Difference B Confidence Interval Difference Difference Confidence Interval Difference Difference Confidence Interval Difference Confidence Interval Difference D Difference D D D D D D D D D D D D D
Variance	2		5.656	
Anderso	nderson-Darling Statistic		0.4277	
Anderso	nderson-Darling p-value		0.2479	
Skewnes	SS		0.4721	
Kurtosis	i		1.759	

4. Paired Samples Wilcoxon Signed Ranks Test: Drug A, B

ې Dair				1 export 🕞 copy 🗄 0 notes 🗁 0 files ⑦ help [] max ⊗ c			
Pair Samp Wilco	Paired Samples	Wilcoxon Si	gned Ranks T	est: Drug A, B			
dl Te	created 2 days ago / modifi	ed a day ago					
Drug A	Conclusio		vel, do not reject the null hypothesis. There is insufficient evidence to reject the e median of the differences ('Drug A' - 'Drug B') is equal to '0'.				
В	Null Hypothes			Drug A' - 'Drug B') is equal to '0'.			
	Alternative Hypothes	is The median of	f the differences ('Di	rug A' - 'Drug B') is NOT equal to '0'.			
	Hypothesis Test Result	S		Charts of 2 variables			
	Lower Cut-off < Test Statis off	tic < Upper Cut-	10 < 10.5 < 43				
	p-value > alpha		0.1651 > 0.1	p-value Test Statistic			
	90% Confidence Interval		(-2.5, 5.116e-05)	p-value Teșt Statistic			
	Significance Level		0.1	······································			
	Sample Size for Test (exclu	uding ties)	9	Reject Do Not Reject R∰JecNot Reject 0 0.2 0.4 0.6 0 50 100			
	Median of Differences		-1	Confidence Interval Summary			
	Sample Summary			Confidence Interval Summary Hypothesized Difference			
		Drug A - Drug B					
	Count	10					
	Min	-6		a a a a a a a a a a a a a a a a a a a			
	Max	3		-2 -1 0 -5 0			
	Mean	-1.1		Data			
dian			-1				
ndard	Deviation	2.3	378				
iance		5.6	56				
derson	-Darling Statistic	0.42	277				
derson	-Darling p-value	0.24	79				
wness	5	-0.4	72				
tosis		1.7	759				

5. Mann Whitney Wilcoxon Test: BTU (normal approximation)

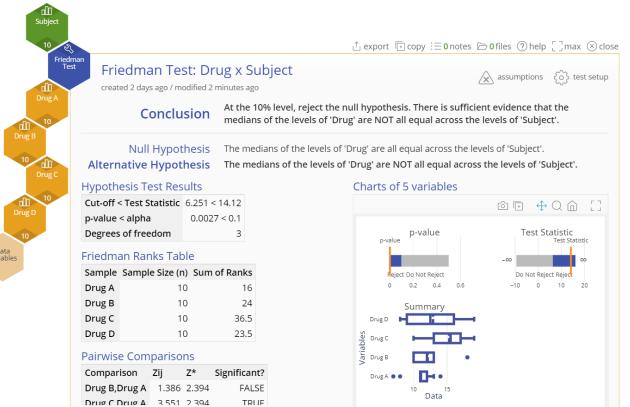
eg.		,	••		🖞 export ा ⊂ copy : Ξ 0 notes 🗁 0 files ⑦ help [] max ⊗ clo
Man White Wilcox Test	Mann Whitney		st: BTU (n	orma	al approximation) 🔬 assumptions နှစ်} test setup
BTU.In_1	Conclusio	n			e null hypothesis. There is insufficient evidence to reject the 1' is greater than or equal to the median of 'BTU.In_2'.
TU.ln_2 50	Null Hypothes Alternative Hypothes			-	er than or equal to the median of 'BTU.In_2'. an the median of 'BTU.In_2'.
	Hypothesis Test Result	5		C	Tharts of 2 variables
	Lower Cut-off < Test Statis p-value > alpha 85% Confidence Interval	tic < Upper Cut-of	f 871 < 908 < 1 0.2287 > 0.1 (-Inf, 0.	15	P-value Image: Imag
	Significance Level Sample Size for Test (exclu	iding ties)	0.1		-co
	Median of Differences		Ν	IA	Reject Db Not Reject Reject Do Not Reject 0 0.2 0.4 0.6 850 900 950
	Sample Summary				Confidence Interval Summary
	Count Min Max Mean Median		50 97 06 14		Hypothesized Difference -0.2 -0.1 0 0.1 0.2 5 10 15 Data
tandard	Deviation	3.02	2.767		
ariance		9.12	7.656		
nderson	-Darling Statistic	0.4745	0.1896		
nderson	-Darling p-value	0.2283	0.8951		
kewness	5	0.7075	-0.099		
urtosis		0.784	-0.272		

6. Mann Whitney Wilcoxon Test: Task 1, 2 (Exact test)

r S				û export ा ि copy ≟ = 0 not	tes 🗁 0 files			
Ma White Wilco Te Task1	Mann Whi	tney Wilcoxon Te	Test: Task 1, 2 (Exact test)					
15	Con		At the 15% level, reject the null hypothesis. There is sufficient evidence that the median of 'Task1' is greater than the median of 'Task2'.					
Task2	Alternative Hy	oothesis The media	The median of 'Task1' is less than or equal to the median of 'Task2'. The median of 'Task1' is greater than the median of 'Task2'.					
	Hypothesis Test			Charts of 2 variables				
	P-value < alpha 85% Confidence Int Significance Level Sample Size for Tes Median of Differen Sample Summar Count Min Max Mean Median	t (excluding ties) ces	0.1497 < 0.15 (4.42e-05, Inf) 0.15 15 5.5	P-value p-value p-value Do Not Reject 0 0.2 0.4 0.4 Confidence Interval Hypothesized Difference 0 50µ 100µ	Task1 Ta			
	Deviation Darling Statistic Darling p-value							

7. Kruskal Wallis Test: Drug

ata able


থ্য Kruskal	-				🖞 export [+ copy = 0 notes	🗁 0 files ⑦ help	[]max ⊗clo
Wallis Test	Kruskal Wa	llis Tes	t: Drug					<ြိ> test setup
dl) Drug A	created 2 days ago	/ modified 2 i	minutes ago					<u> </u>
ÎI 10	Conc	lusion		level, reject the the levels of 'Dr	21	sis. There is sufficio equal.	ent evidence tha	at the
ug B 10 clD Drug C	Null Hyp Alternative Hyp			s of the levels of as of the levels o	0 1			
	Hypothesis Test Results			Charts of 4 variables				
	ut-off < Test Statist	ic 4.642 <	9.36				ô (+ 🕂	
ug D p	-value < alpha	0.0249	< 0.2					
10 D	egrees of freedom		3			p-value	Test S	tatistic Test Statistic
Kr	ruskal Wallis Rar	nks Table						
Si	Sample Sample Size (n) Sample Median Average Rank					Reject Do Not Reject	-∞ Do Not Rej	co
	orug A	10	11	14.45		0 0.2 0.4 0.6	-	5 10
D	orug B	10	12	17.55		_		
D	orug C	10	15.5	29.5	Drug D	Summary		
D	orug D	10	12.5	20.5				
Pa	airwise Compari	sons			/ariables Drug C			
C	omparison Zij	Z* 3	Significant?		-			
D	orug B,Drug A 0.59	29 2.128	FALSE		Drug A 🌒			
D	rug C,Drug A 2.8	79 2.128	TRUE			10 15 Data		

Pairwise Comparisons

Comparison	Zij	Z*	Significant?
Drug B,Drug A	0.5929	2.128	FALSE
Drug C,Drug A	2.879	2.128	TRUE
Drug D,Drug A	1.157	2.128	FALSE
Drug C,Drug B	2.286	2.128	TRUE
Drug D,Drug B	0.5643	2.128	FALSE
Drug D,Drug C	1.721	2.128	FALSE

Sample Summary							
	Drug A	Drug B	Drug C	Drug D			
Count	10	10	10	10			
Min	7	10	10	8			
Max	14	18	19	19			
Mean	11	12.1	15.3	12.9			
Median	11	12	15.5	12.5			
Standard Deviation	2.108	2.378	2.869	4.122			
Variance	4.444	5.656	8.233	16.99			
Anderson-Darling Statistic	0.564	0.7885	0.2172	0.2897			
Anderson-Darling p-value	0.1072	0.0264	0.7817	0.5371			
Skewness	-0.8	1.835	-0.376	0.3627			
Kurtosis	0.4781	4.346	-0.348	-1.117			

8. Friedman Test: Drug x Subject

Pairwise Comparisons

Comparison	Zij	Z*	Significant?
Drug B,Drug A	1.386	2.394	FALSE
Drug C,Drug A	3.551	2.394	TRUE
Drug D,Drug A	1.299	2.394	FALSE
Drug C,Drug B	2.165	2.394	FALSE
Drug D,Drug B	0.0866	2.394	FALSE
Drug D,Drug C	2.252	2.394	FALSE

Sample Summary

	Drug A	Drug B	Drug C	Drug D
Count	10	10	10	10
Min	7	10	10	8
Max	14	18	19	19
Mean	11	12.1	15.3	12.9
Median	11	12	15.5	12.5
Standard Deviation	2.108	2.378	2.869	4.122
Variance	4.444	5.656	8.233	16.99
Anderson-Darling Statistic	0.564	0.7885	0.2172	0.2897
Anderson-Darling p-value	0.1072	0.0264	0.7817	0.5371
Skewness	-0.8	1.835	-0.376	0.3627
Kurtosis	0.4781	4.346	-0.348	-1.117

Back

VI. Dataset: Regression

1. Simple Regression: Score1 x Score2

Regression Model

Score2 = 1.118 + (0.2177) * (Score1)

Regression Statistics

Correlation Coefficient, R	0.9784
R Squared	0.9572
Adjusted R Squared	0.9511
Count	9

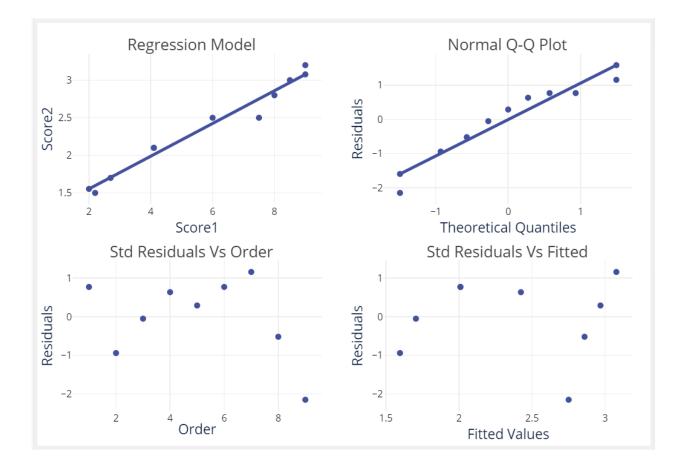
Coefficient Table

	Estimate	Std. Error	t value	p- value	NALowerCl95	NAUpperCI95
(intercept)	1.118	0.1093	10	0	NA	NA
Score1	0.2177	0.0174	13	0	NA	NA

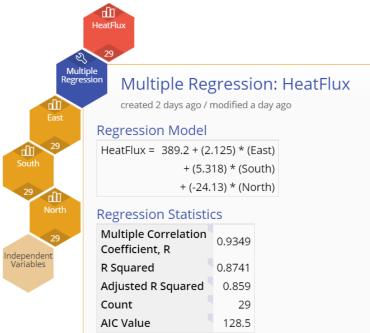
ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	1	2.542	2.542	156.6	0
Residuals	7	0.1136	0.0162	NA	NA
Total	8	2.656	NA	NA	NA

Regression Statistics


Correlation Coefficient, R	0.9784
R Squared	0.9572
Adjusted R Squared	0.9511
Count	9

Coefficient Table


	Estimate	Std. Error	t value	p- value	90% Cl (lower)	90% Cl (upper)
(intercept)	1.118	0.1093	10	0	0.9379	1.297
Score1	0.2177	0.0174	13	0	0.1891	0.2463

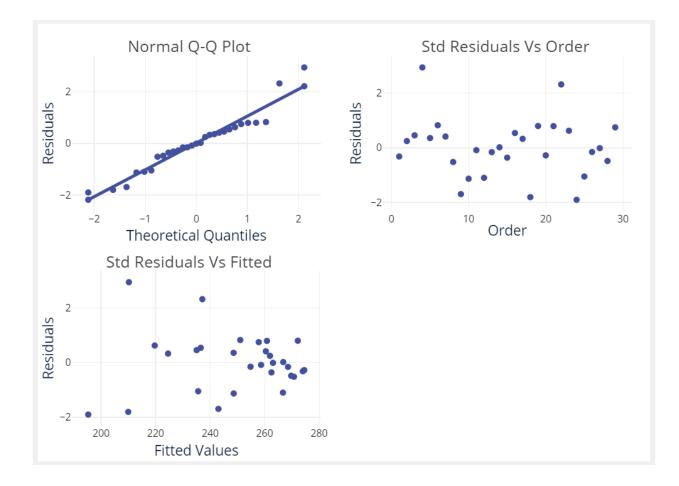
ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	1	2.542	2.542	156.6	0
Residuals	7	0.1136	0.0162	NA	NA
Total	8	2.656	NA	NA	NA

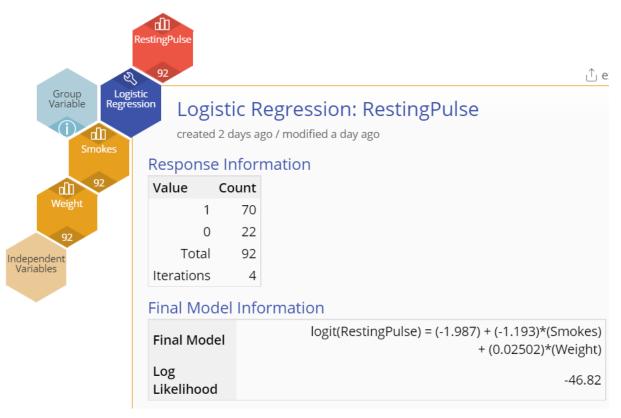
2. Multiple Regression: HeatFlux

Coefficient Table

	Estimate	Std. Error	t value	p- value	95% Cl (lower)	95% Cl (upper)
(intercept)	389.2	66.09	5.9	0	259.6	518.7
East	2.125	1.214	1.7	0.0925	-0.256	4.505
South	5.318	0.9629	5.5	0	3.431	7.206
North	-24.13	1.869	-13	0	-27.79	-20.47


ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Regression	3	12,834	4,278	57.87	0
Residuals	25	1,848	73.92	NA	NA
Total	28	14,682	NA	NA	NA


Variation Inflation Factors

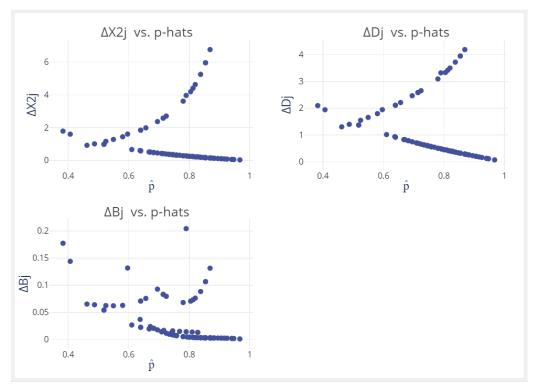
	VIF Value				
East	1.122				
South	1.206				
North	1.091				

Variables Not in Model

3. Logistic Regression: RestingPulse

Estimated Response Model

	Coefficients	S.E.	Z	p-value	Lower 90% Cl	Upper 90% Cl
(intercept)	-1.987	1.679	-1.183	0.2367		
Smokes	-1.193	0.553	-2.157	0.031	-2.103	-0.283
Weight	0.025	0.0123	2.042	0.0412	0.0049	0.0452

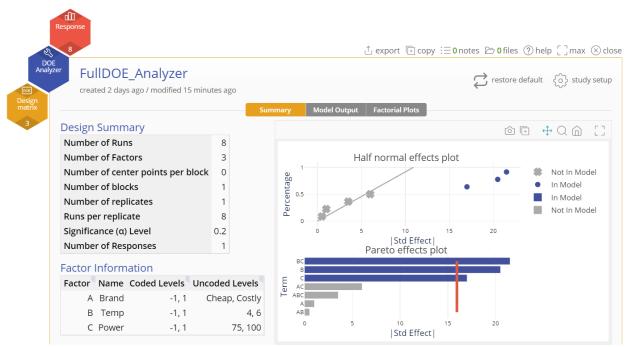

	Odds Ratio	Lower 90% CI	Upper 90% Cl
Smokes	0.3033	0.1221	0.7532
Weight	1.025	1.005	1.046

Test of Model Fit

	Chi-Square	DF	p-value
Model Significance	7.574	2	0.0227
Pearson	88.63	89	0.4911
Deviance	93.64	89	0.3477
Hosmer-Lemeshow	5.037	8	0.7536

Test of Multicollinearity

Variable VIF Smokes 1.042 Weight 1.042



VII. Dataset: DOE_Full

1. FullDOE_DesignWizard

2. FullDOE_Analyzer

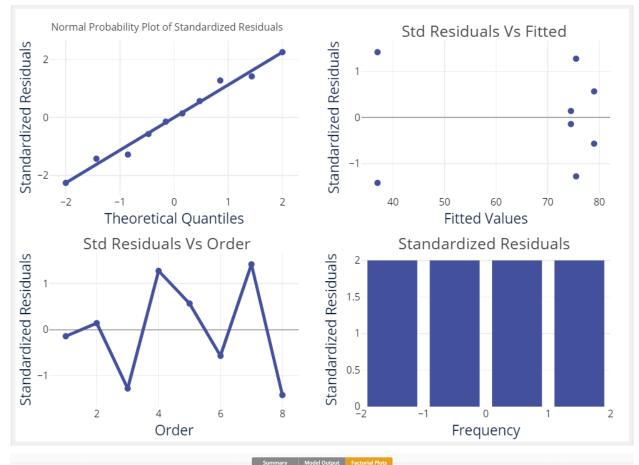
Half Normal Effects

Term	Effect Size
B-Temp	20.5
C-Power	17
BC	21.5

Model Equations

Coded Model	Response = 66.5 + -10.75*BC + -10.25*B + -8.5*C
Uncoded Model	Response = -199 + -0.86*BC + -10.25*B + -0.68*C

Effects Coefficient

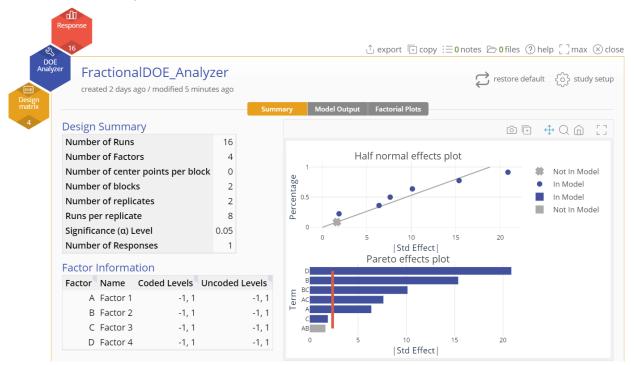

	Effect Size	Coefficients	Standard Error	80% CI (lower)	80% CI (upper)
Constant	NA	66.5	1.759	63.8	69.2
BC	-21.5	-10.75	1.759	-13.45	-8.053
B-Temp	-20.5	-10.25	1.759	-12.95	-7.553
C-Power	-17	-8.5	1.759	-11.2	-5.803

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Model	3	2,343	781	31.56	0.003
BC	1	924.5	924.5	37.35	0.0036
B-Temp	1	840.5	840.5	33.96	0.0043
C-Power	1	578	578	23.35	0.0084
Residuals	4	99	24.75	NA	NA
Total	7	2,442	NA	NA	NA

Model Statistics

Standard Error	4.975
R Squared	0.9595
Adjusted R Squared	0.9291



VIII. Dataset: DOE_Fractional

1. FractionalDOE_DesignWizard

Your design summary:					
Factors	4				
Levels per factor	2				
Center points per block	0				
Replicates	2				
Number of blocks	2				
Total runs:					
Corner points	16				
Center points	0				
Total runs	16				
Resolution	IV				
This design will be able to other two-factor interactio Create Design		but some two-	factor interactions v	vill be aliased (confo	ounded) wi

2. FractionalDOE_Analyzer

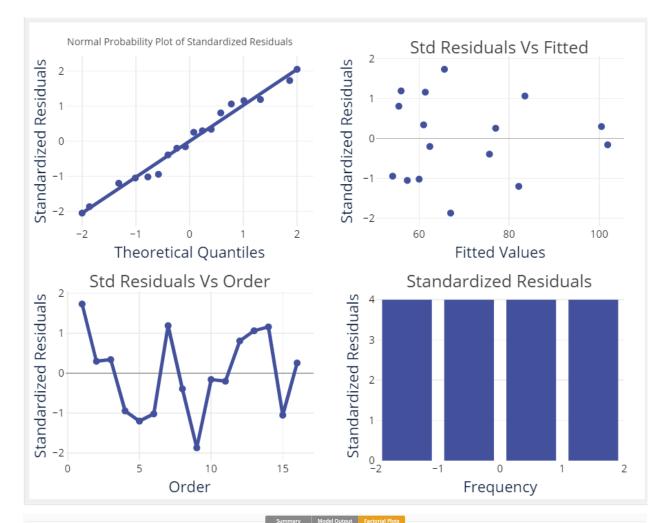
Half Normal Effects

Term	Effect Size
A-Factor 1	6.375
B-Factor 2	15.38
C-Factor 3	1.875
D-Factor 4	20.88
AC	7.625
BC	10.12

Model Equations

Coded Model	Response = 70.06 + 10.44*D + -7.69*B + 5.06*BC + -3.81*AC + 3.19*A + -0.94*C
Uncoded	Response = 70.06 + 10.44*D + -7.69*B + 5.06*BC + -3.81*AC + 3.19*A +
Model	-0.94*C

Effects Coefficient


	Effect Size	Coefficients	Standard Error	95% CI (lower)	95% Cl (upper)
Constant	NA	70.06	4.16	60.47	79.66
D-Factor 4	20.87	10.44	4.16	0.8437	20.03
B-Factor 2	-15.37	-7.687	4.16	-17.28	1.906
BC	10.12	5.062	4.16	-4.531	14.66
AC	-7.625	-3.812	4.16	-13.41	5.781
A-Factor 1	6.375	3.187	4.16	-6.406	12.78
C-Factor 3	-1.875	-0.938	4.16	-10.53	8.656

ANOVA

	DF	Sum Sq	Mean Sq	F value	p-value
Block	1	7.563	7.563	0.0273	0.8728
Model	6	3,508	584.6	2.111	0.1618
D-Factor 4	1	1,743	1,743	6.294	0.0364
B-Factor 2	1	945.6	945.6	3.414	0.1018
BC	1	410.1	410.1	1.481	0.2583
AC	1	232.6	232.6	0.8398	0.3863
A-Factor 1	1	162.6	162.6	0.587	0.4656
C-Factor 3	1	14.06	14.06	0.0508	0.8274
Residuals	8	2,216	276.9	NA	NA
Total	15	5,731	NA	NA	NA

Model Statistics

Standard Error	16.64
R Squared	0.6134
Adjusted R Squared	0.2752

₩ main effect plots 🖄 interaction plots 😚 cube plots

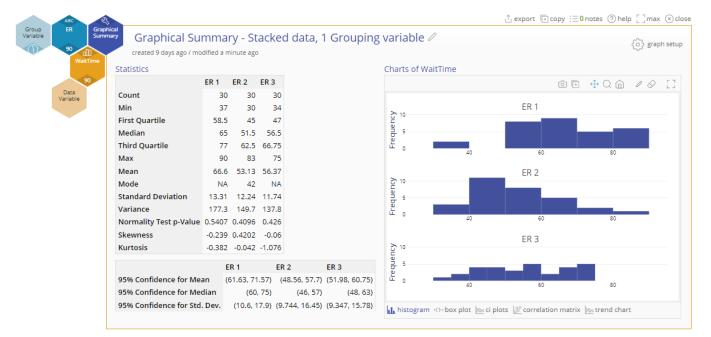
Back

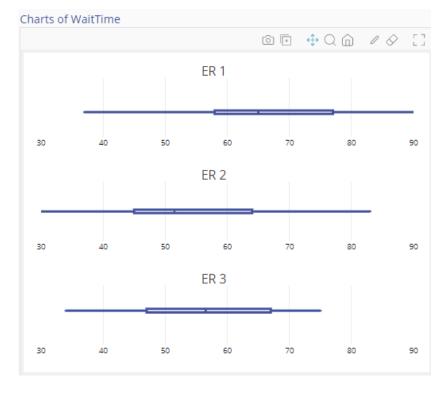
IX. Dataset: DOE_General

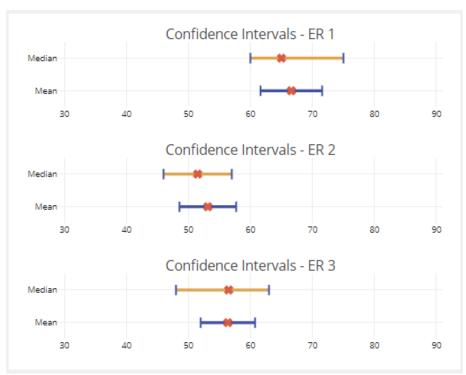
1. GeneralDOE_DesignWizard

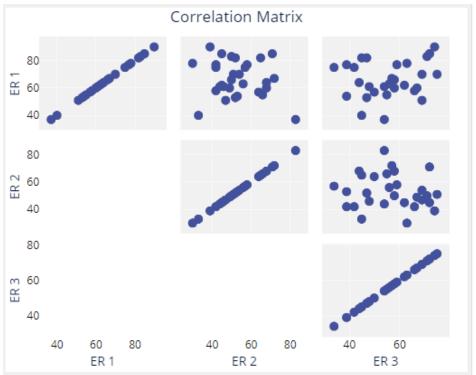
A	🖞 export 🕞 copy 📃 🛛 notes 🗁 0 files 🕐 help [] max 🛞 cl
^{isign} GeneralDC	DE_DesignWizard
	/ modified a few seconds ago
Guide Me 3-	+ Levels 3 Factors Setup Power Summary
Your design sumn	hary:
Factors	3
Levels	3,2,2
Replicates	2
Total runs:	
Runs	12
Replicates	2
Total runs	24
Create Design	
4	
•	

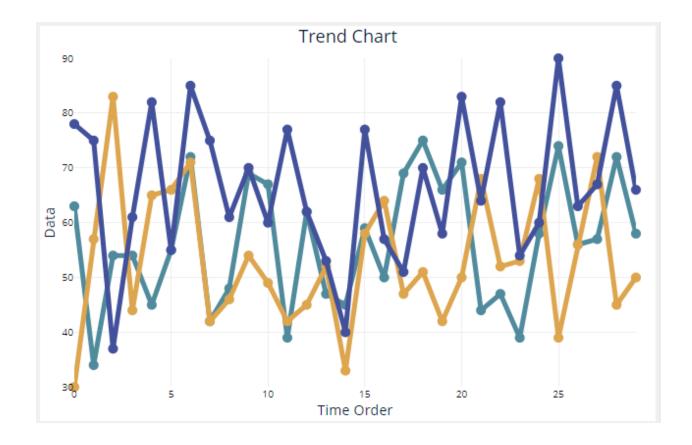
2. GeneralDOE_Analyzer



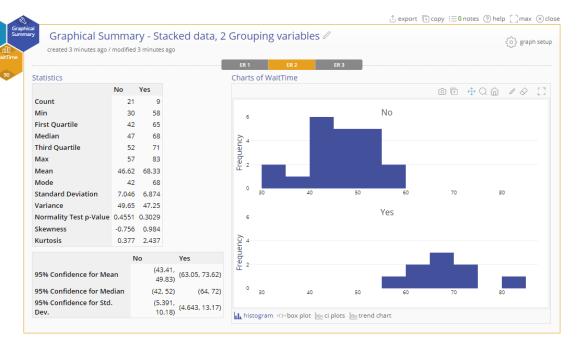


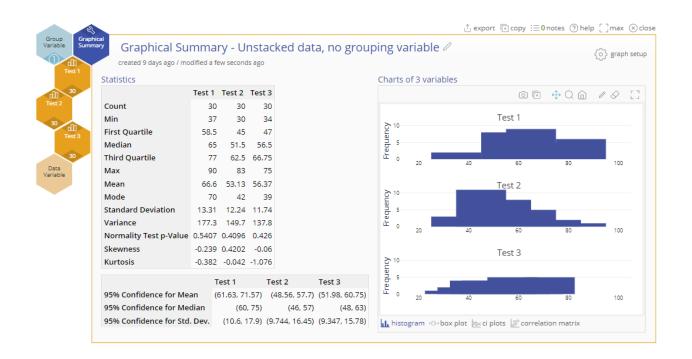

Back

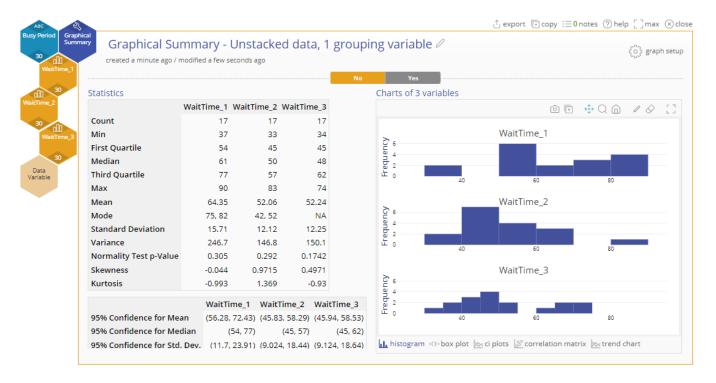

X. Dataset: Graphical_Summary

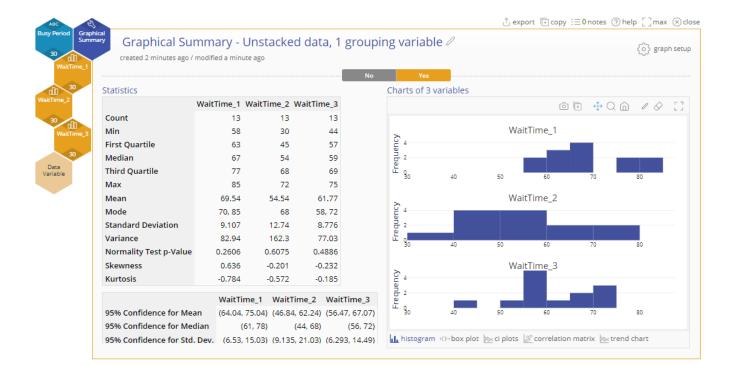


1. Graphical Summary - Stacked data, 1 Grouping variable



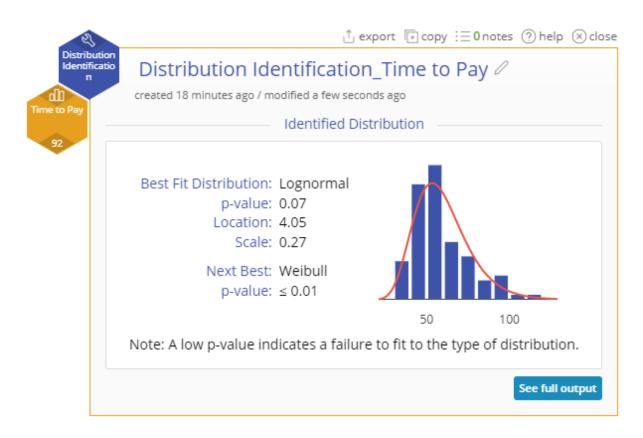

2. Graphical Summary - Stacked data, 2 Grouping variables:




Graphical Summary - Stacked data, 2 Grouping variables 🖉 င်္ဂြိ graph setup created 4 minutes ago / modified 3 minutes ago ER 1 ER 2 Statistics Charts of WaitTime No Yes ◙ ♥ ♥ Q ⋒ / ⊘ [] 14 Count 16 Min 34 58 No 43.5 62.25 First Quartile Median 47 68 Frequency Third Quartile 54 71.75 Max 57 75 2 47.25 66.79 Mean Mode NA NA 6.787 5.912 50 70 Standard Deviation Variance 46.07 34.95 Yes Normality Test p-Value 0.6317 0.3735 -0.232 -0.297 Skewness Frequency -0.717 -1.294 Kurtosis No Yes (43.63, 95% Confidence for Mean (63.37, 70.2) 50.87) 0 95% Confidence for Median (42, 54) (59, 72) 30 40 50 95% Confidence for Std. (5.014, 10.5) (4.286, 9.524) Dev. histogram +0+ box plot 📐 ci plots 📐 trend chart

3. Graphical Summary - Unstacked data, no grouping variable

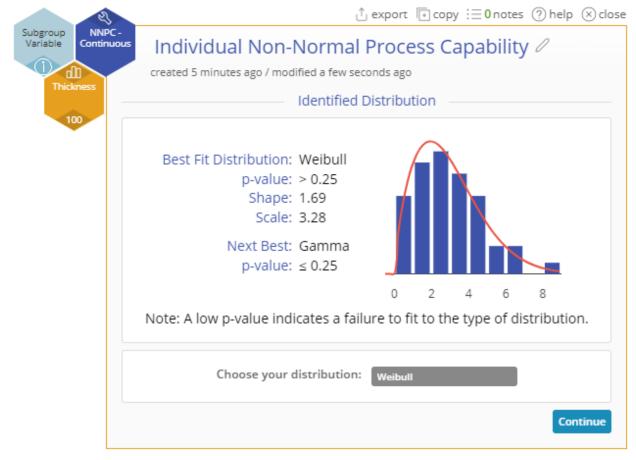
4. Graphical Summary - Unstacked data, 1 grouping variable



Back

XI. Dataset: Distribution ID

1. Distribution Identification_Time to Pay: Summary output



2. Distribution Identification_Time to Pay: Full output:

Back

XII. Dataset: NNPC - Continuous


1. Individual Non-Normal Process Capability

Remaining tables:

Process Performance (% Defective)					
			erved	Expected	
% Below LSL		14	12.53		
% Above USL		2	2.69		
Total			16	15.22	
Parts per Mil	arts per Million 160		0,000	152,236	
Process Characteristics					
Sample Size			100		
Subgroup Size		1			
Number of Subgroups		100			
Sample Mean			2.92		
Standard Deviation		1.79			
Distribution Parameters					
Distribution	Weił	bull			
Location	1	N/A			
Shape	1	.69			
Scale	3	.28			

2. Subgrouped Non-Normal Process Capability

Remaining tables:

Process Performance (% Defective)

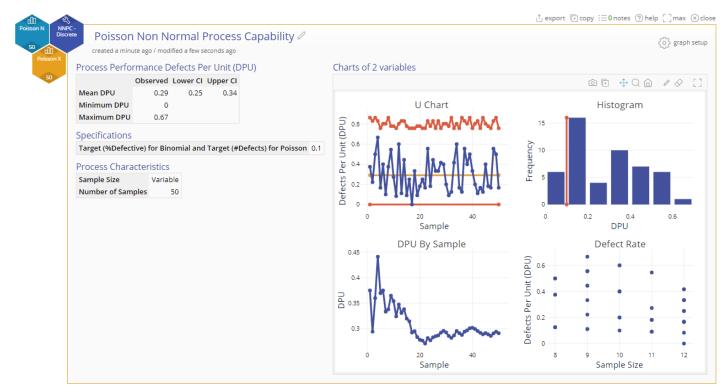
	Observed	Expected
% Below LSL	14	12.53
% Above USL	2	2.69
Total	16	15.22
Parts per Million	160,000	152,236

Process Characteristics

Sample Size	100
Subgroup Size	5
Number of Subgroups	20
Sample Mean	2.92
Standard Deviation	1.79

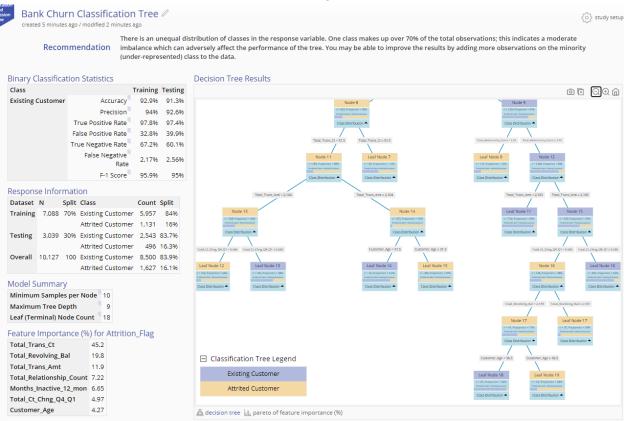
Distribution Parameters

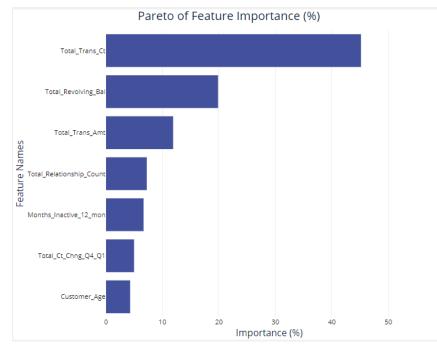
Distribution	Weibull
Location	N/A
Shape	1.69
Scale	3.28

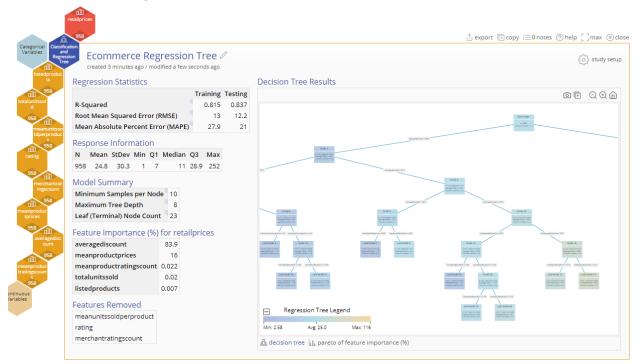

Back

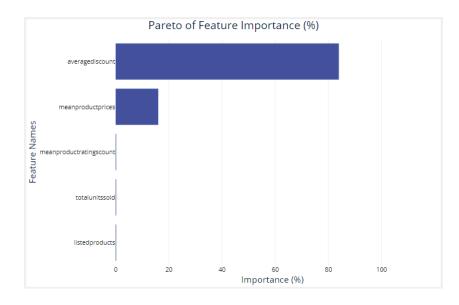
XIII. Dataset: Non Normal Process Capability - Discrete Data

1. Binomial Non Normal Process Capability




2. Poisson Non Normal Process Capability


XIV. Dataset: Classification and Regression Trees


1. Bank Churn Data Classification Tree: 70-30 training-test data split

2. Ecommerce Data Regression Tree: 10-fold Cross-validation

<u>Top</u>